

REV	05
Data	10-2025
Sostituisce	D-EIMAC01706-18_04IT

Manuale di installazione, manutenzione e funzionamento D-EIMAC01706-18_05IT

Gruppi frigoriferi raffreddati ad aria con compressori scroll

EWAT_B

Descrizione

1	INTRODUZIONE	3
1.1	Precauzioni contro i rischi residui	
1.2	Descrizione generale	4
1.3	Informazioni sul refrigerante	5
1.4	Utilizzo	
1.5	Informazioni sull'installazione	5
2	RICEVIMENTO DELL'UNITÀ	8
2.1	Stoccaggio	
3	LIMITI DI FUNZIONAMENTO	9
4	INSTALLAZIONE MECCANICA	
4.1	Sicurezza	
	4.1.1 Dispositivi di sicurezza	
4.2	Movimentazione e sollevamento	
4.3	Posizionamento e assemblaggio	
4.4	Requisiti di spazio minimi	
4.5	Rumore e protezione sonora	
4.6	Circuito idraulico per la connessione all'unità	
1.0	4.6.1 Tubazioni dell'acqua	
	4.6.2 Installazione del flussostato	
	4.6.3 Recupero di calore	
4.7	Trattamento dell'acqua	
4.8	Stabilità di funzionamento e contenuto minimo di acqua nell'impianto	
4.9	Protezione antigelo per evaporatore e scambiatori di recupero	
4.9 5	INSTALLAZIONE ELETTRICA	
ວ 5.1	Connessioni elettriche	
5.1	5.1.1 Requisiti dei cavi	
5.2		
	Sbilanciamento delle fasiRESPONSABILITÀ DELL'OPERATORE	24
6 7		
	MANUTENZIONE	
7.1 7.2	Tabella Pressione/Temperatura	
1.2	Manutenzione ordinaria	21
	7.2.1 Manutenzione condensatore ad aria a micro-canali	
	7.2.2 Impianto elettrico	28
•	7.2.3 Assistenza e garanzia limitata	
8	VERIFICHE PER IL PRIMO AVVIAMENTO	
9	IMPORTANTI INFORMAZIONI SUL REFRIGERANTE USATO	
9.1	Istruzioni per le unità caricate in fabbrica e in campo	30
10	DISMISSIONE E SMALTIMENTODISMISSIONE E SMALTIMENTO	
11 12	DURATADURATA	
12	DURATA	38
EL ENC	PO DELLE EIGUIDE	
	CO DELLE FIGURE	_
Fig. 1 -	Limiti Operativi Multi V-Silver	
	Limiti Operativi Multi V-Gold	
	Limiti Operativi Single V-Silver	
	Limiti Operativi Single V-Gold	
	Istruzioni di sollevamento	
	Livellamento unità	
	Requisiti di spazio minimi	
	Installazione di chiller multipli	
	- Schema idraulico senza pompa/e a bordo (pressione massima operativa 20 bar)	
	- Schema idraulico per pompa singola single V (EWATxx5B) (opz. 78-79/134-135)	
	- Schema idraulico per pompa doppia single V (EWATxx5B) (opz. 80-81/136-137)	
	- Schema idraulico per Modular V (EWATxx0B) (opz. 78-79-80-81/134-135-136-137)	
	- Schema del circuito del refrigerante (P&ID) dell'unità mono-circuito standard	
	- Schema del circuito del refrigerante (P&ID) con opzione free-cooling leggero dell'unità mono-circuito	
	- Schema del circuito del refrigerante (P&ID) con opzione free-cooling completo dell'unità mono-circuito	
•	- Descrizione etichette applicate su quadro elettrico	34
	CO DELLE TABELLE	
	1- Evaporatore - Fattore di incrostazione	
Tabella	2- Scambiatore di calore ad aria - Fattore di correzione in altitudine	11
	3- Percentuale minima di glicole per la bassa temperatura ambiente dell'aria	
Tabella	ı 4- Limiti di qualità dell'acqua accettabili	21
	ı 5- Pressione/Temperatura dell'R32	
	ı 6– Programma di manutenzione ordinaria standard	
	i 7– Programma di manutenzione ordinaria standardi	

1 INTRODUZIONE

Questo manuale fornisce informazioni sulle funzioni e le procedure standard di tutte le unità della serie e costituisce un importante documento di supporto per il personale qualificato, ma non può mai sostituirsi ad esso.

Tutte le unità vengono consegnate accompagnate da schemi elettrici, disegni dotati di certificazione, targhetta identificativa e DoC (Dichiarazione di Conformità). Questi documenti riportano tutti i dati tecnici dell'unità acquistata. In caso di discrepanze tra il contenuto del manuale e la documentazione fornita con l'unità, fare sempre affidamento a quest'ultima perché essa è parte integrante di questo manuale.

Prima di procedere con l'installazione e l'avvio dell'unità, leggere attentamente il presente manuale.

Un'installazione impropria può causare: corto circuiti, perdite, incendi o danni di altro tipo all'apparecchiatura o lesioni alle persone.

L'unità deve essere installata da operatori/tecnici professionisti in conformità alle leggi vigenti del paese d'installazione. L'avvio dell'unità deve essere anch'esso eseguito da personale autorizzato e addestrato e tutte le attività devono essere effettuate in conformità, nel pieno rispetto delle norme e delle leggi locali.

<u>SE LE ISTRUZIONI CONTENUTE IN QUESTO MANUALE NON SONO CHIARE, È ASSOLUTAMENTE VIETATO PROCEDERE CON L'INSTALLAZIONE E L'AVVIO.</u>

In caso di dubbi per l'assistenza e per ulteriori informazioni, contattare un rappresentante autorizzato del produttore.

1.1 Precauzioni contro i rischi residui

- 1. installare l'unità secondo le istruzioni del presente manuale
- 2. eseguire periodicamente tutte le operazioni di manutenzione previste in questo manuale
- indossare dispositivi di protezione (guanti, protezioni oculari, casco, ecc.) adatti al lavoro in corso; non indossare abiti né accessori che possono essere catturati o risucchiati dai flussi d'aria; legare indietro i capelli, se lunghi, prima di entrare nell'unità
- 4. prima di aprire una pannellatura della macchina accertarsi che questa sia saldamente incernierata ad essa
- 5. le alette degli scambiatori di calore e i bordi dei pannelli e dei componenti metallici possono causare tagli
- 6. non rimuovere le protezioni dei componenti mobili mentre l'unità è in funzione
- accertarsi che le protezioni dei componenti mobili siano montate correttamente prima di riavviare l'unità
- 8. gli azionamenti delle ventole, dei motori e delle cinghie potrebbero essere in funzione: prima di entrare, attendere sempre che questi componenti si siano arrestati e adottare le misure necessarie per impedirne il riavvio
- 9. le superfici della macchina e delle tubazioni possono diventare molto calde o fredde e provocare ustioni
- 10. mai superare il limite di pressione massima (PS) del circuito idraulico dell'unità
- 11. prima di rimuovere componenti dei circuiti idraulici pressurizzati, chiudere la sezione delle tubazioni interessate e scaricare il fluido gradualmente per stabilizzare la pressione a livello atmosferico
- 12. non usare le mani per verificare possibili perdite di refrigerante
- 13. scollegare l'unità dalla rete elettrica mediante l'interruttore principale prima di aprire il pannello di controllo
- 14. verificare che l'unità sia stata collegata correttamente a terra prima di avviarla
- 15. installare la macchina in un'area idonea; in particolare, non installarla all'esterno se è prevista per l'uso interno
- 16. non usare cavi di sezione inadeguata né collegamenti con prolunghe, nemmeno per brevi periodi o emergenze
- 17. per le unità con condensatori per rifasamento attendere 5 minuti dopo lo scollegamento dell'alimentazione elettrica prima di accedere all'interno del quadro di distribuzione
- 18. se l'unità è dotata di compressori centrifughi con inverter integrato, scollegarla dalla rete elettrica e attendere almeno 20 minuti prima di accedervi per lavori di manutenzione: l'energia residua nei componenti, la cui dissipazione richiede almeno 20 minuti, comporta il rischio di scosse elettriche
- 19. l'unità contiene gas refrigerante pressurizzato: le apparecchiature pressurizzate non vanno toccate, fuorché durante i lavori di manutenzione, che devono essere affidati a personale qualificato autorizzato
- 20. collegare le utenze all'unità seguendo le istruzioni del presente manuale e quelle sulla pannellatura dell'unità stessa
- 21. Al fine di evitare rischi ambientali, assicurarsi che le eventuali perdite di fluido siano raccolte all'interno di dispositivi idonei in conformità alle normative locali
- 22. se è necessario smontare un componente, assicurarsi che sia stato rimontato correttamente prima di avviare l'unità
- 23. se le normative vigenti prescrivono l'installazione di sistemi antincendio in prossimità della macchina, verificare che questi siano idonei all'estinzione di incendi delle apparecchiature elettriche, dell'olio di lubrificazione del compressore e del refrigerante, come specificato nelle schede di sicurezza di questi fluidi
- 24. se l'unità è dotata di dispositivi per lo sfiato delle sovrapressioni (valvole di sicurezza): quando queste valvole scattano, il gas refrigerante viene rilasciato a una temperatura e una velocità elevate; evitare che il gas rilasciato arrechi danni a persone o oggetti e, se necessario, scaricare il gas in conformità alle disposizioni della EN 378-3 e alle normative locali vigenti.

- 25. mantenere tutti i dispositivi di sicurezza in buone condizioni di funzionamento e controllarli periodicamente secondo le normative vigenti
- 26. conservare tutti i lubrificanti in contenitori adeguatamente contrassegnati
- 27. non stoccare liquidi infiammabili vicino all'unità
- 28. saldare o brasare solo tubazioni vuote dopo aver rimosso ogni traccia di olio lubrificante; non usare fiamme né altre fonti di calore in prossimità di tubazioni contenenti fluido refrigerante
- 29. non usare fiamme libere in prossimità dell'unità
- 30. il macchinario deve essere installato in strutture protette contro le scariche atmosferiche in conformità alle leggi applicabili e agli standard tecnici
- 31. non piegare né colpire le tubazioni contenenti fluidi pressurizzati
- 32. è vietato camminare sulle macchine o lasciarvi sopra degli oggetti
- 33. l'utente è responsabile della valutazione complessiva del rischio di incendio nel luogo di installazione (ad esempio, calcolo del carico di incendio)
- 34. durante il trasporto fissare sempre l'unità al pianale del veicolo, per impedirne movimenti e ribaltamento
- 35. la macchina deve essere trasportata secondo le normative vigenti tenendo conto delle caratteristiche dei fluidi al suo interno e della loro descrizione nella scheda dati di sicurezza
- 36. il trasporto inadeguato può causare danni alla macchina e persino perdite di fluido refrigerante. Prima di avviare la macchina, controllare se presenta perdite ed eventualmente effettuare le riparazioni necessarie
- 37. lo scarico accidentale di refrigerante in un'area chiusa può causare carenza di ossigeno e, quindi, il rischio di asfissia: installare il macchinario in un locale ben ventilato in conformità alla EN 378-3 e alle normative locali vigenti
- 38. l'installazione deve soddisfare i requisiti della EN 378-3 e delle normative locali vigenti; in caso di installazione interna bisogna garantire una buona ventilazione e, se necessario, montare i rivelatori di refrigerante.

1.2 Descrizione generale

L'unità acquistata è un "chiller raffreddato ad aria", una macchina pensata per raffreddare l'acqua (o una miscela di acquaglicole) entro i limiti descritti di seguito in questo manuale. Il funzionamento dell'unità è basato sulla compressione, condensazione del vapore e successiva evaporazione, secondo il ciclo di Carnot inverso. I componenti principali sono:

- compressore tipo scroll che aumenta la pressione del vapore refrigerante da quella di evaporazione a quella di condensazione;
- condensatore, dove il vapore ad alta pressione viene condensato, smaltendo in atmosfera il calore rimosso dall'acqua refrigerata grazie a uno scambiatore di calore raffreddato ad aria;
- valvola di espansione che consente di ridurre la pressione del liquido condensato da quella di condensazione a quella di evaporazione;
- evaporatore (BPHE), nel quale il refrigerante liquido a bassa pressione evapora per raffreddare l'acqua.

Esistono due modalità opzionali: free-cooling completo e free-cooling leggero. Nella modalità free-cooling il compressore e la valvola di espansione sono bypassati, per cui vengono usati solo il condensatore e l'evaporatore. Nel caso della modalità free-cooling leggero l'evaporatore usato è lo stesso scambiatore di calore a piastre usato nella modalità standard, mentre nella modalità free-cooling completo l'evaporatore è uno scambiatore di calore a fascio tubiero supplementare ed è bypassato anche lo scambiatore di calore a piastre della modalità standard.

Tutte le unità vengono completamente assemblate in fabbrica e collaudate prima della spedizione. La gamma EWAT_B è costituita da modelli con un unico circuito frigorifero (da 76 a 350 kW) e da modelli con doppio circuito frigorifero (da 150 a 701 kW).

La macchina utilizza il fluido refrigerante R32 adatto per tutto il campo di applicazione della macchina.

Il controllore è precablato, impostato e collaudato in fabbrica. Sono richieste soltanto le normali connessioni da effettuare sul campo come tubazioni, connessioni elettriche ed interblocchi delle pompe, semplificando l'installazione ed incrementando l'affidabilità. Tutti i sistemi di sicurezza e di controllo del funzionamento sono installati in fabbrica nel pannello di controllo.

Le istruzioni di questo manuale sono applicabili a tutti i modelli di questa serie salvo diversamente specificato.

1.3 Informazioni sul refrigerante

Questo prodotto contiene refrigerante R32 che ha un minimo impatto ambientale, grazie al suo basso valore di Potenziale Globale di Riscaldamento (GWP). In accordo alla ISO 817 il refrigerante R32 è classificato A2L cioè leggermente infiammabile, in quanto la velocità di propagazione della fiamma è bassa, e non tossico.

Il refrigerante R32 può bruciare lentamente quando tutte le seguenti condizioni sono presenti:

- La concentrazione è compresa tra il limite inferiore e superiore di infiammabilità (LFL & UFL)
- La velocità dell'aria è minore della velocità di propagazione del fronte di fiamma
- L'energia della sorgente di innesco è maggiore della minima energia di innesco del refrigerante

Nelle condizioni di funzionamento normali per le apparecchiature di condizionamento e l'ambiente lavorativo non genera particolari rischi.

Caratteristiche fisiche del refrigerante R32

Classe di sicurezza (ISO 817)	A2L
Gruppo PED	1
Limite pratico (kg/m³)	0,061
ATEL/ ODL (kg/m³)	0,30
LFL (kg/m³) a 60°C	0,307
Densità del vapore a 25°C, 101,3 kPa (kg/m³)	2,13
Massa molecolare	52,0
Punto di ebollizione (°C)	-52
GWP (100 yr ITH)	675
GWP (ARS 100 yr ITH)	677
Temperatura di autoignizione (°C)	648

1.4 Utilizzo

Le unità EWAT_B sono progettate e costruite per il raffreddamento di edifici o processi industriali. La prima messa in funzione sull'impianto finale deve essere effettuata da tecnici Daikin, specificatamente formati a tale scopo. La mancata osservanza di questa procedura di avviamento influisce sulla garanzia della fornitura.

La garanzia standard di queste apparecchiature copre le parti con provato difetto nei materiali o nella lavorazione. Materiali soggetti a naturale consumo non sono coperti da garanzia.

1.5 Informazioni sull'installazione

Il chiller deve essere installato all'aperto o in una sala macchine (classificazione del luogo di installazione: III).

Affinché sia assicurata la classificazione III del luogo di installazione deve essere previsto un sistema di sfiato meccanico sul secondario.

Devono essere seguiti i regolamenti e le normative locali per l'installazione; in assenza di questi riferirsi alla EN 378-3:2016.

Nei seguenti paragrafi sono fornite informazioni che possono essere aggiunte ai requisiti degli standard di sicurezza dei e regolamenti locali.

Linee guida aggiuntive per l'utilizzo di apparecchiature con R32 installate all'aperto

I sistemi di refrigerazione situati all'aperto devono essere posizionati in modo da evitare che una fuga di refrigerante possa fluire all'interno dell'edificio o comunque mettere in pericolo persone e proprietà.

Il refrigerante non deve poter fluire all'interno di nessun condotto di ventilazione, porte di ingresso, botole o aperture simili in caso di perdita. Quando è prevista una struttura di riparo per la macchina installata all'aperto, questa deve essere dotata di un sistema di ventilazione naturale o forzata.

Per i sistemi di refrigerazione installati all'aperto ma in un luogo in cui un rilascio di refrigerante può stagnare, ad esempio sottoterra, l'installazione deve seguire i requisiti per la rilevazione delle perdite e per la ventilazione richiesti per le sale macchine

Linee guida aggiuntive per l'utilizzo di apparecchiature con R32 installate in una sala macchine

L'installazione di un chiller all'interno della sala macchine deve essere fatta in conformità ai regolamenti locali e nazionali. I seguenti requisiti (in accordo alla EN 378-3:2016) possono essere utilizzati per l'analisi.

- Un'analisi dei rischi basata sul principio di sicurezza per un sistema di refrigerazione (così come determinato dal fabbricante e comprendente la carica e la classificazione di sicurezza del refrigerante usato) deve essere condotta per determinare se è necessario installare il chiller in una sala macchine separata.
- La sala macchine non dovrebbe essere usata come spazio occupato. Il proprietario dell'edificio o l'utilizzatore deve assicurarsi che l'accesso sia permesso solo a personale qualificato ed istruito.
- Le sale macchine non devono essere utilizzate per lo stoccaggio, fatta eccezione per gli attrezzi, le parti di ricambio e l'olio (compressori) necessari per la macchina installata. Non devono essere stoccati refrigeranti né materiali infiammabili o tossici così come richiesto dai regolamenti nazionali.

- Non devono essere permesse fiamme libere nelle sale macchine se non per attività di saldatura, brasatura o simili, a condizione che la concentrazione di refrigerante sia monitorata e sia garantita un'adeguata ventilazione. Tali fiamme libere non devono essere lasciate senza sorveglianza.
- Un interruttore di emergenza per interrompere l'alimentazione del sistema deve essere previsto fuori dalla sala macchine (vicino alla porta). Un simile dispositivo deve essere previsto in un punto adequato della sala macchine.
- Tutte le tubazioni e i condotti di ventilazione, che attraversano pareti, soffitto e pavimenti della sala macchina devono essere sigillati.
- Le superfici calde non devono eccedere il valore di temperatura pari all'80% della temperatura di autoignizione (in °C) o 100 K in meno della temperatura di autoignizione del refrigerante, quale dei due è più basso.

Refrigerante	Temperatura di autoignizione	Temperatura massima superficiale
R32	648 °C	548°C

- Le sale macchine devono avere aperture verso l'esterno in numero sufficiente da garantire alle persone vie di fuga in caso di emergenza. Le porte devono essere a tenuta ermetica, a chiusura automatica e progettate in modo tale da poter essere aperte dall'interno (sistema antipanico).
- Le sale macchine speciali in cui la carica di refrigerante è superiore al limite pratico devono avere porte che aprono direttamente verso l'esterno o attraverso un vestibolo dedicato dotato di porte a chiusura automatica e a tenuta ermetica.
- La ventilazione delle sale macchine deve essere sufficiente sia per le normali condizioni operative che per le emergenze.
- La ventilazione per le normali condizioni operative deve essere in accordo con i regolamenti nazionali.
- La ventilazione meccanica di emergenza deve essere attivata dal sistema di rilevazione installato in sala macchine.
 - o Questo sistema di ventilazione deve essere:
 - Indipendente da ogni altro sistema di ventilazione.
 - Dotato di due comandi di emergenza indipendenti, uno installato all'esterno della sala macchine e uno all'interno.
 - o I ventilatori del sistema di ventilazione di emergenza devono:
 - avere il motore installato all'esterno del flusso d'aria o essere classificati per l'uso in zone pericolose (in accordo all'analisi dei rischi).
 - essere installati in modo da evitare la pressurizzazione dei condotti di scarico nella sala macchine.
 - non produrre scintille qualora vengano a contatto con il materiale del condotto.
 - o La portata dell'aria per la ventilazione meccanica di emergenza deve essere almeno pari a:

$$V = 0.014 \times m^{2/3}$$

dove

V è la portata dell'aria in m³/s;

m È la carica di refrigerante presente in sala macchine in kg;

0,014 È un fattore di conversione.

- La ventilazione meccanica deve funzionare in modo continuativo o essere attivata dal sistema di rivelazione fughe.
- Il sistema di rivelazione fughe, quando si innesca, deve automaticamente attivare un allarme, attivare il sistema di ventilazione meccanica e arrestare l'impianto.
- Il posizionamento dei rivelatori deve essere scelto in relazione alla tipologia di refrigerante e in base al punto, o punti, in cui il refrigerante può concentrarsi a seguito della perdita.
- Il posizionamento deve essere fatto tenendo in dovuta considerazione i flussi d'aria localizzati, le sorgenti di ventilazione e le prese d'aria. Devono essere considerati anche possibili danni meccanici o contaminazioni.
- Almeno un rilevatore deve essere installato in ciascuna sala macchine o spazio occupato e/o nel punto più basso per refrigeranti più pesanti dell'aria e nel punto più alto per quelli più leggeri dell'aria.
- I rivelatori devono essere monitorati continuamente. Nel caso di guasto la sequenza di emergenza dovrebbe essere attivata come se fossero stati innescati.
- Il valore di soglia a 30°C o a 0°C, a seconda di quale sia il più critico deve essere fissato al 25% del valore di LFL. Il rilevatore deve continuare ad attivarsi a concentrazioni più alte.

Refrigerante	LFL	Valore di soglia		
R32	0,307 kg/m ³	0,7675 kg/m ³	36000 ppm	

- Tutte le apparecchiature elettriche (non solo quelle del sistema di refrigerazione) devono essere selezionate affinché siano adatte all'uso delle zone identificate nell'analisi dei rischi. Le apparecchiature elettriche sono conformi a questo requisito se l'alimentazione elettrica è interrotta quando la concentrazione di refrigerante raggiunge il 25% del LFL.
- Le sale macchine devono essere **chiaramente segnalate** come tali all'ingresso dell'ambiente, con avvertenze che indichino il divieto di accesso da parte di personale non autorizzato e il divieto di fumare o di tenere luci o fiamme libere. Le avvertenze devono anche indicare che, in caso di emergenza, solo persone autorizzate e a

- conoscenza delle procedure di emergenza devono decidere se entrare nella sala macchine. Deve essere inoltre segnalato il divieto di azionamento non autorizzato dell'impianto.
- Il proprietario / utilizzatore deve tenere un registro aggiornato dell'impianto di refrigerazione.

Il rilevatore di dispersioni opzionale fornito con il chiller è da utilizzarsi esclusivamente per la verifica delle perdite di refrigerante del chiller stesso

2 RICEVIMENTO DELL'UNITÀ

Ispezionare l'unità immediatamente dopo la consegna. In particolare accertarsi che la macchina sia integra in tutte le sue parti e che non vi siano deformazioni dovute ad urti. Tutti i componenti descritti nella bolla di consegna devono essere ispezionati e controllati. Se dovessero presentarsi dei danni al momento del ricevimento della macchina, non rimuovere il materiale danneggiato ed effettuare immediatamente un reclamo scritto all'azienda di trasporto, richiedendo l'ispezione dell'unità; non riparare finché non viene effettuata l'ispezione da parte del rappresentante della compagnia di trasporti. Riferire immediatamente il danno al rappresentante del produttore, preferibilmente con delle fotografie che facilitino il riconoscimento della responsabilità.

La resa dei macchinari s'intende franco stabilimento Daikin Applied Europe S.p.A.

Daikin Applied Europe S.p.A. declina ogni responsabilità in merito ad eventuali danni che i macchinari dovessero subire durante il trasporto verso la località di destinazione.

Usare estrema cautela durante la movimentazione dell'unità per prevenire danni ai componenti.

Prima di installare l'unità verificare che il modello e la tensione elettrica indicata sulla targhetta siano corretti. Il produttore declina ogni responsabilità per eventuali danni che si verificano successivamente all'accettazione dell'unità.

2.1 Stoccaggio

Nel caso in cui fosse necessario stoccare l'unità prima dell'installazione, è necessario osservare alcune precauzioni:

- non rimuovere la plastica di protezione;
- proteggere l'unità da polvere, intemperie ed eventuali roditori;
- non esporre l'unità alla luce diretta del sole;
- non utilizzare nelle vicinanze della macchina fonti di calore e/o fiamme libere.

Sebbene l'unità sia ricoperta da un telo di plastica termorestringente, esso non è destinato alla conservazione a lungo termine e deve essere rimosso e sostituito da teloni o simili, più idonei per il lungo periodo.

Le condizioni ambientali devono rientrare nei seguenti limiti:

- Temperatura ambiente minima: 20 °C;
- Temperatura ambiente massima: +40 °C;
- Umidità relativa massima: 95% senza condensa.

Lo stoccaggio a una temperatura inferiore alla minima può provocare danni ai componenti, invece a una temperatura superiore alla massima provoca l'apertura delle valvole di sicurezza, con conseguente perdita di refrigerante. Lo stoccaggio in atmosfera umida può danneggiare i componenti elettrici.

3 LIMITI DI FUNZIONAMENTO

Il funzionamento al di fuori dei limiti indicati può danneggiare l'unità. In caso di dubbio contattare il rappresentante del produttore. Per garantire un corretto funzionamento dell'unità, il valore della portata d'acqua nell'evaporatore deve essere compreso nel range dichiarato per quell'unità. Una portata dell'acqua molto inferiore al valore nominale evidenziato nel punto di selezione dell'unità può causare problemi di congelamento, incrostazioni e cattivo controllo. Una portata dell'acqua molto superiore al valore nominale evidenziato nel punto di selezione dell'unità ha come risultato un'inaccettabile perdita di carico ed eccessiva erosione e vibrazioni dei tubi che possono causarne la rottura; fare riferimento al Chiller Selection Software (CSS) per il range corretto di ogni unità. Per le unità con l'opzione del free-cooling, la modalità free-cooling può essere attiva solo se la temperatura dell'aria ambiente è di almeno 4 °C inferiore a quella dell'acqua in uscita.

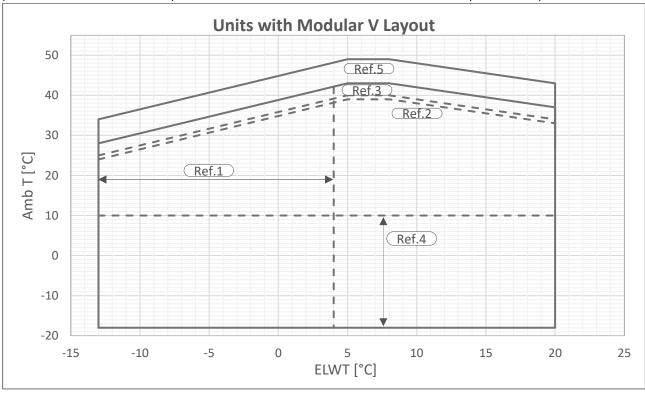


Fig. 1 - Limiti Operativi Multi V-Silver Units with Modular V Layouts 50 Ref.5 40 30 Amb T [°C] Ref.1 20 10 Ref.4 0 -10 İ -20 0 -15 -10 -5 5 10 15 20 25 ELWT [°C]

Fig. 2 - Limiti Operativi Multi V-Gold

Amb T	Temperatura aria ambiente
ELWT	Temperatura dell'acqua in uscita dall'evaporatore
Ref 1	Il funzionamento con ELWT< 4°C richiede l'opzione 08 (brine) e il glicole
Ref 2	Il funzionamento con temperature ambiente < 10°C richiede l'opzione 99 (modulazione della velocità dei ventilatori) o l'opzione 42 (Speedtroll)
Ref 3	Le unità con la configurazione "Rumore ridotto" possono avere un incremento del livello sonoro in questa area
Ref 4	Funzionamento a carico parziale; il funzionamento a pieno carico potrebbe necessitare dell'opzione 142 (Kit alta temperatura ambiente)

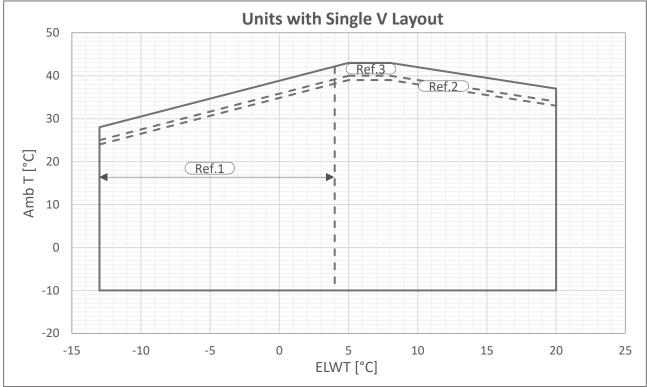


Fig. 3 - Limiti Operativi Single V-Silver

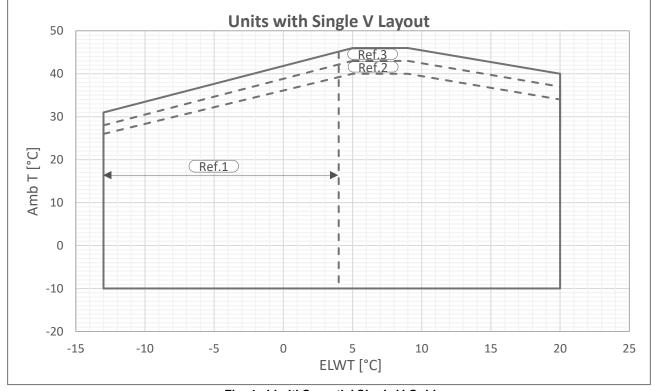


Fig. 4 - Limiti Operativi Single V-Gold

Amb T	Temperatura aria ambiente
ELWT	Temperatura dell'acqua in uscita dall'evaporatore
Ref 1	Il funzionamento con ELWT< 4°C richiede l'opzione 08 (brine) e il glicole
	Il funzionamento con temperature ambiente < 10°C richiede l'opzione 99 (modulazione della velocità dei ventilatori) o
Ref 2	l'opzione 42 (Speedtroll)
	Funzionamento a carico parziale; il funzionamento a pieno carico potrebbe necessitare dell'opzione 142 (Kit alta temperatura
Ref 3	ambiente)

I grafici sopra mostrati costituiscono una linea guida sui limiti operativi nel range. Fare riferimento al software di selezione CSS per i limiti operativi reali nelle condizioni di lavoro per ciascun modello.

Tabella 1- Evaporatore - Fattore di incrostazione

Α	В	С	D
0.0176	1.000	1.000	1.000
0.0440	0.978	0.986	0.992
0.0880	0.957	0.974	0.983
0.1320	0.938	0.962	0.975

Legenda:

- A = Fattore di incrostazione (m² °C / kW)
- B = Fattore di correzione della capacità frigorifera
- C = Fattore di correzione della potenza assorbita
- D = Fattore di correzione dell'EER

Tabella 2- Scambiatore di calore ad aria - Fattore di correzione in altitudine

Α	0	300	600	900	1200	1500	1800
В	1013	997	942	908	875	843	812
С	1.000	0.993	0.986	0.0979	0.0973	0.967	0.960
D	1.000	1.005	1.009	1.015	1.021	1.026	1.031

Legenda:

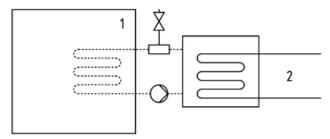
- A = Altitudine sul livello del mare (m)
- B = Pressione barometrica (mbar)
- C = Fattore di correzione della capacità frigorifera
- D = Fattore di correzione della potenza assorbita
- L'altitudine operativa massima è 2000 m sul livello del mare.
- Contattare la fabbrica nel caso in cui l'unità debba essere installata ad altitudini comprese tra i 1000 e i 2000 m sul livello del mare.

Tabella 3- Percentuale minima di glicole per la bassa temperatura ambiente dell'aria

Α	0	300	600	900	1200	1500	1800
В	1013	997	942	908	875	843	812
С	1.000	0.993	0.986	0.0979	0.0973	0.967	0.960
D	1.000	1.005	1.009	1.015	1.021	1.026	1.031

Legenda:

AAT = Temperatura Aria Ambiente (°C) (2)


- A = Glicole Etilenico (%) (1)
- B = Glicole Propilenico (%) (1)
- (1) Percentuale minima di glicole per evitare il congelamento del circuito dell'acqua alla temperatura ambiente dell'aria indicata
- (2) Temperatura ambiente dell'aria che supera i limiti di funzionamento dell'unità.
- La protezione del circuito dell'acqua è necessaria nella stagione invernale, anche con l'unità non in funzionamento.

4.1 Sicurezza

Tutte le macchine EWAT_B sono costruite in conformità alle principali Direttive europee (Direttiva Macchine, Direttiva per la Bassa Tensione, Direttiva per la Compatibilità Elettromagnetica, Direttiva per le attrezzature a pressione PED); assicurarsi di ricevere, insieme alla documentazione, anche la Dichiarazione di Conformità (DoC) del prodotto alle direttive. Prima dell'installazione e la messa in funzione del macchinario, le persone coinvolte in questa attività devono aver acquisito le informazioni necessarie a svolgere questi compiti, applicando tutte le informazioni raccolte in questo manuale. In particolare:

- l'unità deve essere saldamente ancorata al suolo quando non deve essere movimentata;
- l'unità può essere sollevata usando solo i punti appositi segnalati in giallo e fissati alla sua base;
- proteggere sempre il personale operativo con dei dispositivi di protezione individuale adeguati alle attività da svolgere. I dispositivi individuali di comune utilizzo sono: elmetto di protezione, occhiali, guanti, cuffie, scarpe antinfortunistiche. Ulteriori dispositivi di protezione individuale e collettiva devono essere adottati dopo aver effettuato una adeguata analisi dei rischi specifici nell'area di pertinenza, in funzione delle attività da svolgere.

Le unità DAE possono essere installate, senza restrizioni di carica, in sale macchine o all'esterno (locale di classe III). Secondo la EN 378-1, sul circuito secondario/sui circuiti secondari, deve essere installato un sistema di ventilazione meccanica: per assicurarsi che il locale rientri nella classe III, il sistema deve essere classificato come "sistema indiretto chiuso con sfiato".

Sistema indiretto chiuso con sfiato

Legenda

- 1) Spazio occupato
- Parte(i) contenente(i) refrigerante

Le sale macchine non sono considerate come spazio occupato (ad eccezione di quanto definito nel paragrafo 3.5.1: la sala macchine utilizzata come locale di manutenzione deve essere considerata un locale occupato nella categoria di accesso c)

Lo scambiatore di calore (evaporatore o condensatore) è dotato di una valvola di sicurezza installata su una valvola di changeover, che permette la manutenzione e i controlli periodici, senza che si verifichino significative perdite di refrigerante. Non lasciare mai la valvola di sicurezza in posizione intermedia.

Per prevenire danni dovuti ad inalazione e/o contatto diretto con il gas refrigerante, gli sfiati delle valvole di sicurezza devono essere collegati tramire una tubazione di trasporto, prima dell'attivazione della macchina. Queste tubazioni devono essere installate in modo tale che, se la valvola dovesse aprirsi, il flusso di refrigerante in fuoriuscita non investa persone e/o cose, o che possa rientrare nell'edificio tramite finestre e/o altre aperture.

L'installatore è responsabile della connessione della valvola di sicurezza alla tubazione di sfiato, e della dimesione della tubazione. A questo proposito far riferimento allo standard armonizzato EN13136 per la dimensione delle tubazioni di sfiato da collegare alle valvole di sicurezza.

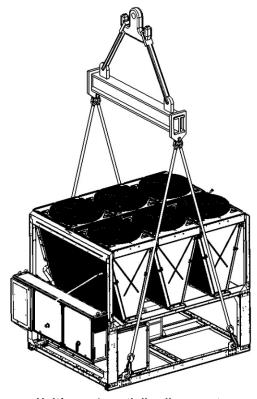
Tutte le precauzioni riguardanti la gestione del refrigerante devono essere osservate secondo le leggi e i regolamenti locali.

4.1.1 Dispositivi di sicurezza

In accordo con la Direttiva per le Apparecchiature a Pressione (Pressure Equipment Directive-PED), è necessario utilizzare i seguenti dispositivi di sicurezza:

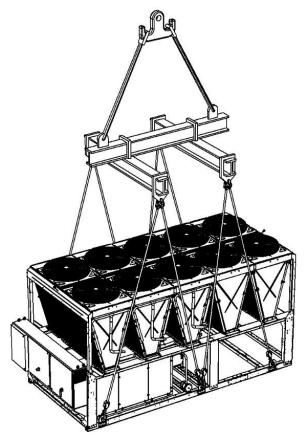
- Pressostato → accessorio di sicurezza.
- Valvola di sicurezza esterna (lato refrigerate) → protezione in caso di eccessiva pressione.
- Valvola di sicurezza esterna (trasferimento del calore lato liquido) → La scelta di queste valvole di sicurezza deve essere efftettuata dal personale responsabile per il completamento del circuito idraulico/dei circuiti idraulici).

Tutte le valvole di sicurezza installate in fabbrica solo saldate al piombo per prevenire cambiamenti a livello di calibrazione. Se le valvole di sicurezza sono installate su una valvola di changeover, questa è dotata di una valvola di sicurezza su entrambe le uscite. Solo una delle due valvole è in funzione, l'altra è isolata. Non lasciare mai una valvola di changeover in posizione intermedia.


Se la valvola di sicurezza viene rimossa per manutenzione o per sostituzione, si prega di assicurarsi che ci sia sempre almeno una vola valvola attiva per ogni valvola di chageover installata sull'unità.

4.2 Movimentazione e sollevamento

Evitare di urtare e/o scuotere l'unità durante le operazioni di movimentazione e di carico/scarico dal veicolo di trasporto. Spingere o tirare l'unità esclusivamente dal telaio della base. Fissare l'unità all'interno del veicolo di trasporto per evitare che si muova causando danni. Fare in modo che nessuna parte dell'unità cada durante il trasporto e il carico/scarico. Tutte le unità della serie sono dotate di punti di sollevamento segnati in giallo. Solo questi possono essere usati per il sollevamento, come mostrato nella seguente figura.


Utilizzare le barre di spaziatura per prevenire danni al banco di condensazione. Posizionare le barre sopra le griglie delle ventole a una distanza di almeno 2,5 metri.

Durante la movimentazione della macchina è obbligatorio prevedere tutti quei dispositivi necessari a garantire la sicurezza personale.

Unità con 4 punti di sollevamento

Il disegno mostra soltanto la versione a 6 ventilatori. La modalità di sollevamento è identica a prescindere dal numero di ventilatori

Unità con 6 punti di sollevamento

Il disegno mostra soltanto la versione a 10 ventilatori. La modalità di sollevamento è identica a prescindere dal numero di ventilatori.

Fig. 5- Istruzioni di sollevamento

Consultare il disegno dimensionale per il collegamento idraulico ed elettrico delle unità.

Le dimensioni di ingombro della macchina, nonché i pesi descritti in questo manuale, sono puramente indicativi.

Il disegno dimensionale contrattuale ed il relativo schema elettrico vengono consegnati al cliente in fase di ordine.

Le attrezzature, le funi, gli accessori di sollevamento e le procedure di movimentazione devono essere conformi ai regolamenti locali e alle normative vigenti.

Utilizzare esclusivamente ganci di sollevamento con dispositivo di chiusura. I ganci devono essere fissati in sicurezza prima di procedere alla movimentazione.

Le funi di sollevamento, i ganci e le barre di spaziatura devono essere sufficientemente resistenti da sostenere l'unità in sicurezza. Verificare il peso dell'unità sulla targhetta identificativa della stessa.

È responsabilità dell'installatore provvedere alla selezione ed al corretto utilizzo delle attrezzature di sollevamento. Si consiglia comunque di utilizzare le funi con capacità verticale minima pari al peso totale della macchina.

La macchina deve essere sollevata con la massima attenzione e cura seguendo le istruzioni dell'etichetta di sollevamento; sollevare l'unità molto lentamente, mantenendola perfettamente a livello.

4.3 Posizionamento e assemblaggio

Tutte le unità sono progettate per usi esterni, su balconi o a terra, a condizione che l'area di installazione sia priva di ostacoli che possano ridurre il flusso d'aria verso le batterie condensanti.

L'unità deve essere installata su una base robusta e perfettamente orizzontale; nel caso di installazione su balconi o tetti, potrebbe essere necessario ricorrere a delle travi di distribuzione del peso.

Per l'installazione al suolo è necessaria una solida base di cemento, spessa almeno 250 mm e più ampia dell'unità. La base deve essere inoltre in grado di supportare il peso dell'unità.

L'unità deve essere installata sopra supporti antivibranti (AVM), in gomma o a molle. Il telaio dell'unità deve essere perfettamente livellato sopra i dispositivi antivibranti.

Evitare sempre l'installazione come illustrata in Figura 3. Nel caso in cui i dispositivi antivibranti non siano regolabili, il livellamento del telaio dell'unità deve essere garantito utilizzando distanziali a piastre metalliche.

Prima della messa in servizio dell'unità, il livellamento deve essere verificato mediante un dispositivo di livellamento laser o altri dispositivi analoghi. La planarità non deve superare i 5 mm per le unità lunghe fino a 7 m e i 10 mm per le unità più lunghe di 7 m.

Se l'unità viene installata in luoghi facilmente accessibili da persone e animali, è consigliabile installare griglie di protezione per le sezioni del condensatore e del compressore.

Affinché l'unità possa garantire, una volta installata, le prestazioni migliori, osservare le precauzioni e le istruzioni seguenti:

- evitare il ricircolo del flusso d'aria;
- assicurarsi che non vi siano ostacoli che impediscano il corretto flusso d'aria;
- assicurarsi di fornire fondazioni resistenti e solide per ridurre il rumore e le vibrazioni;
- evitare di installare l'unità in ambienti particolarmente polverosi per limitare la contaminazione delle batterie condensanti con lo sporco;
- L'acqua nel sistema deve essere particolarmente pulita e tutte le tracce di olio e ruggine devono essere rimosse.
 Installare un filtro dell'acqua meccanico sul tubo di ingresso dell'unità:
- evitare lo scarico del refrigerante dalle valvole di sicurezza sul luogo dell'installazione. Se necessario, è possibile raccordarle con tubi di scarico la cui sezione trasversale e la lunghezza devono essere conformi alle leggi nazionali e alle direttive europee.

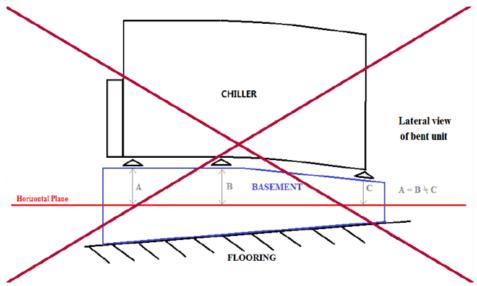


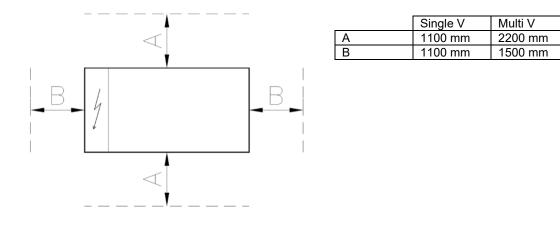
Fig. 6 - Livellamento unità

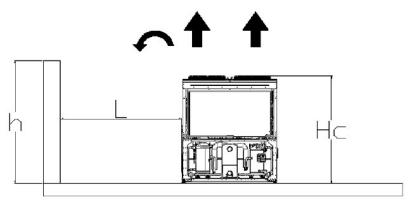
4.4 Requisiti di spazio minimi

Per tutte le unità è fondamentale rispettare le distanze minime al fine di garantire una ventilazione ottimale delle batterie condensanti.

Una volta stabilito il sito in cui posizionare l'unità, e per garantire un adeguato flusso d'aria, evitare quanto segue:

- ricircolo di aria calda;
- alimentazione pneumatica insufficiente al condensatore raffreddato ad aria.


Entrambe le condizioni citate precedentemente possono causare un aumento della pressione di condensa, la quale a sua volta genera una riduzione dell'efficienza energetica e della capacità refrigerante.


Ogni lato dell'unità deve essere accessibile per l'esecuzione delle operazioni di manutenzione post-installazione, e lo scarico verticale dell'aria non deve essere ostruito. La figura seguente mostra lo spazio minimo richiesto.

Lo scarico d'aria verticale non deve essere ostruito per almeno 5000mm.

In caso di due chiller installati in campo libero, la distanza minima raccomandata fra di essi è di 3600 mm; in caso di due chiller allineati, la distanza minima è di 1500 mm. Le immagini seguenti offrono degli esempi di installazioni consigliate. Se l'unità viene montata senza osservare le distanze minime consigliate da pareti e/od ostacoli verticali, potrebbe verificarsi un ricircolo di aria calda e/o un'alimentazione insufficiente al condensatore raffreddato ad aria con conseguente riduzione della capacità e dell'efficienza.

Il microprocessore consentirà comunque all'unità di adattarsi alle nuove condizioni operative offrendo la capacità massima in qualsiasi circostanza, anche nei casi in cui la distanza laterale sia inferiore a quella consigliata, a condizione però che queste condizioni operative non influiscano negativamente sulla sicurezza del personale o sull'affidabilità dell'unità.

Se h<Hc→ L≥ 3,0 m (multi V) / L≥ 1,8 m (single V); se h>Hc o L è minore del valore raccomandato, contattare il vostro distributore Daikin per valutare le diverse modalità possibili.

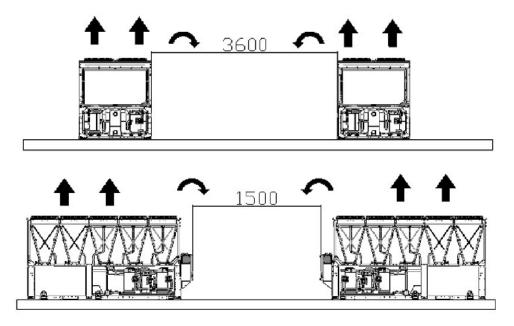


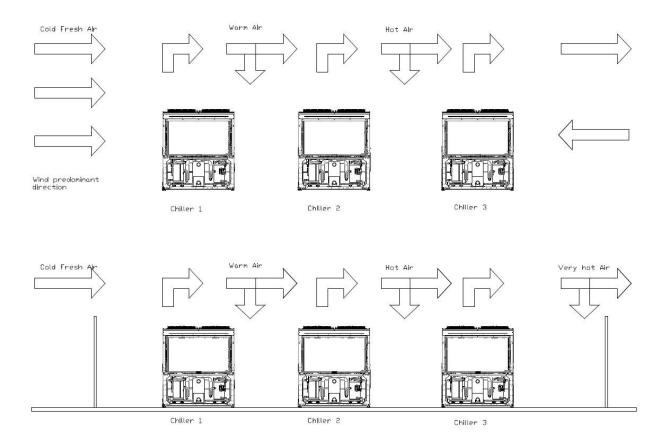
Fig. 7 - Requisiti di spazio minimi

Le distanze minime sopra riportate garantiscono la funzionalità del chiller nella maggior parte delle applicazioni. Esistono tuttavia situazioni specifiche che comprendono installazioni di chiller multipli; in tal caso vanno rispettate le seguenti raccomandazioni:

Chiller multipli installati uno di fianco all'altro in un campo libero con vento dominante

Considerando un'installazione in aree con vento dominante da una direzione specifica (come mostrato nella seguente fig.):

- Chiller N°1: funziona normalmente senza alcuna sovratemperatura ambiente
- Chiller N° 2: funziona in un ambiente riscaldato. Il chiller funziona con aria di ricircolo dal Chiller 1 e il ricircolo da sé stesso.
- Chiller N° 3: funziona in un ambiente con sovratemperatura per via dell'aria di ricircolo dagli altri due chiller.


Per evitare il ricircolo dell'aria calda causato dai venti dominanti, è preferibile l'installazione in cui tutti i chiller sono allineati con il vento dominante (vedi figura seguente).

Chiller multipli installati uno di fianco all'altro in un'area delimitata

In caso di aree delimitate da pareti di altezza pari o superiore a quella dei chiller, l'installazione è sconsigliata. I chiller 2 e 3 funzionano a temperature sensibilmente superiori per via del maggior ricircolo. In tal caso è necessario adottare precauzioni speciali in base alla specifica installazione (ad es.: pareti con griglie, installazione dell'unità sul telaio di base per aumentarne l'altezza, condotti sullo scarico delle ventole, ventole di sostentazione alte, ecc.).

Tutti i casi sopra indicati sono ancora più sensibili in caso di condizioni di progettazione vicine ai limiti della finestra operativa dell'unità.

NOTA: Daikin declina qualsiasi responsabilità in caso di malfunzionamenti generati dal ricircolo dell'aria calda o da un flusso d'aria insufficiente, in seguito all'installazione incorretta in caso di mancato recepimento delle raccomandazioni sopra riportate.

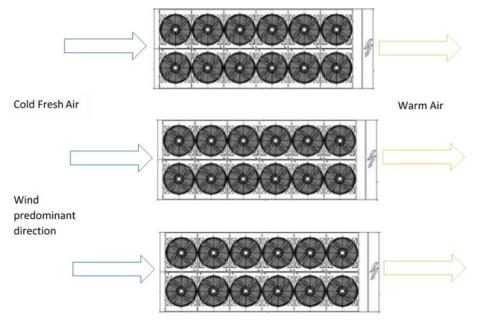


Fig. 8 - Installazione di chiller multipli

4.5 Rumore e protezione sonora

Il rumore generato dall'unità è dovuto principalmente alla rotazione dei compressori e delle ventole.

Il livello sonoro di ogni modello è riportato nella relativa documentazione di vendita.

Se l'unità è installata, usata e sottoposta a manutenzione correttamente, il livello di emissione sonora non richiede l'impiego di nessun dispositivo di protezione speciale per il lavoro continuativo vicino alla stessa.

Nei casi in cui l'installazione sia sottoposta al rispetto di requisiti sonori speciali, potrebbe essere necessario impiegare dispositivi di attenuazione del rumore aggiuntivi, è necessario isolare l'unità dalla sua base con estrema cura, applicando correttamente gli elementi antivibrazione (forniti come optional). I giunti flessibili devono essere installati anche sui collegamenti idraulici.

4.6 Circuito idraulico per la connessione all'unità

4.6.1 Tubazioni dell'acqua

I tubi devono essere progettati limitando il più possibile le curve e i cambiamenti verticali di direzione. In questo modo i costi di installazione si riducono notevolmente e le prestazioni del sistema migliorano.

Il sistema idraulico deve essere dotato di:

- 1. Montaggi antivibrazione che riducano la trasmissione delle vibrazioni alle strutture.
- 2. Valvole isolanti che isolino l'unità dal sistema idraulico durante le operazioni di manutenzione.
- 3. Per proteggere il chiller, l'evaporatore/gli evaporatori deve/-ono essere protetto/i dal congelamento mediante un monitoraggio continuo del flusso d'acqua nell'evaporatore/negli evaporatori mediante un flussostato. Nella maggior parte dei casi, in sito il flussostato è impostato per generare un allarme solo quando la pompa dell'acqua si spegne e il flusso d'acqua scende a zero. Si raccomanda di regolare il flussostato al fine di produrre un "Allarme Perdita Acqua" quando il flusso d'acqua raggiunge il 50% del valore nominale; in tal caso l'evaporatore/gli evaporatori è/sono protetto/i dal congelamento e il flussostato può rilevare l'intasamento del filtro dell'acqua.
- 4. Dispositivo di sfiato dell'aria manuale o automatico e dispositivo di drenaggio che siano montati rispettivamente nel punto più alto e più basso del sistema.
- 5. Evaporatore e dispositivo di recupero di calore che non siano posizionati nel punto più alto del sistema.
- 6. Un dispositivo adatto che possa mantenere il sistema idraulico sotto pressione (vasca di espansione ecc.).
- 7. Indicatori di pressione e temperatura dell'acqua che assistano l'operatore durante le operazioni di assistenza e manutenzione.
- 8. Un filtro o un dispositivo che possa rimuovere le particelle dal liquido. L'uso di un filtro allunga la vita dell'evaporatore e della pompa contribuendo a mantenere il sistema idraulico nelle condizioni migliori. Il filtro dell'acqua deve essere installato il più vicino possibile al chiller. Se il filtro dell'acqua è installato in un'altra parte del sistema idraulico, l'Installatore deve garantire la pulizia delle tubazioni dell'acqua tra il filtro dell'acqua e l'evaporatore. Se l'unità dispone dell'opzione del free-cooling completo, il filtro deve essere installato nella tubazione dell'acqua comune a monte degli evaporatori (vedere Fig. 15).

La massima dimensione della maglia del filtro raccomandata è pari a:

- 0,87 mm (DX S&T)
- 1,0 mm (BPHE)
- 1,2 mm (Allagato)

Nel caso dell'opzione free-cooling completo, tenere conto del valore BPHE (1,0 mm) per l'apertura massima della maglia del filtro.

- 9. Evaporatore dotato di resistenza elettrica con un termostato che garantisca la protezione contro il congelamento dell'acqua a una temperatura ambiente fino a -18°C.
 - Tutti gli altri tubi dell'acqua/dispositivi idraulici esterni all'unità devono quindi essere protetti contro il gelo.
- 10. Il dispositivo di recupero di calore deve essere svuotato e privato dell'acqua durante la stagione invernale, salvo se viene aggiunta al circuito idraulico una miscela di etilene glicole nella percentuale appropriata.
- 11. In caso di sostituzione dell'unità, l'intero sistema idraulico deve essere svuotato e pulito prima di installare la nuova unità. Si raccomandano test regolari e un appropriato trattamento chimico dell'acqua prima dell'avvio della nuova unità.
- 12. Qualora si aggiunga al sistema idraulico del glicole per fornire una protezione antigelo, si sappia che la pressione di aspirazione sarà più bassa, le prestazioni dell'unità inferiori e i cali di pressione maggiori. Sarà necessario inoltre regolare nuovamente tutti i sistemi di protezione dell'unità, come l'antigelo e il dispositivo per contrastare la bassa pressione.
- 13. Prima di isolare i tubi dell'acqua, controllare che non vi siano perdite. Il circuito idraulico completo deve essere isolato per evitare la formazione di condensa e la riduzione della capacità di refrigerazione. Proteggere i tubi dell'acqua dal gelo durante l'inverno (usando per esempio soluzione di glicole o un cavo scaldante).
- 14. Controllare che la pressione dell'acqua non superi la pressione di progetto degli scambiatori di calore lato acqua. Installare una valvola di sicurezza sulla tubazione dell'acqua a valle dell'evaporatore.
- 15. Se l'unità dispone dell'opzione di free-cooling completo 172, le tubazioni idrauliche devono essere progettate come illustrato in fig. 14; le sonde della temperatura dell'acqua in ingresso e in uscita devono essere installate nella tubazione dell'acqua comune a monte degli evaporatori. Le valvole idrauliche a farfalla devono essere automatiche (elettroniche) e dotate di feedback di fine corsa; entrambe devono essere collegate al pannello di controllo dell'unità come illustrato nello schema elettrico. Se l'unità dispone dell'opzione kit 173, le tubazioni dell'acqua sono già montate nella macchina con le sonde di temperatura dell'acqua, le valvole idrauliche a farfalla e i feedback di fine corsa. La pompa dell'acqua deve ugualmente essere collegata al pannello di controllo dell'unità come illustrato nello schema elettrico.

4.6.2 Installazione del flussostato

Per garantire un flusso d'acqua sufficiente attraverso l'evaporatore è essenziale che sia installato un flussostato sul circuito idraulico. Il flussostato può essere installato sui tubi dell'acqua in ingresso o in uscita, ma è consigliabile installarlo su quello in uscita. Lo scopo del flussostato è arrestare l'unità in caso di interruzione del flusso dell'acqua, proteggendo così l'evaporatore dal congelamento.

Il produttore offre, come optional, un flussostato selezionato appositamente per svolgere questa funzione.

Si tratta di flussostato a paletta adatto per un uso continuativo all'esterno e compatibile con tubi di diametro compreso tra 1" e 6".

Il flussostato è fornito con un contatto pulito che deve essere collegato elettricamente ai terminali illustrati nello schema elettrico.

Il flussostato deve essere messo a punto per intervenire quando il flusso d'acqua dell'evaporatore raggiunge il 50% del valore nominale.

Se l'unità dispone dell'opzione del free-cooling completo, il flussostato deve essere installato nella tubazione dell'acqua comune a monte degli evaporatori.

4.6.3 Recupero di calore

Le unità possono essere opzionalmente dotate di un sistema per il recupero di calore.

Tale sistema è costituito da uno scambiatore di calore raffreddato ad acqua ubicato sul tubo di scarico dei compressori e una gestione dedicata della pressione di condensazione.

Per garantire il corretto funzionamento del compressore, la temperatura dell'acqua all'interno delle unità di recupero del calore non deve essere inferiore a 20°C.

Il progettista dell'impianto e l'installatore del chiller dovranno garantire il rispetto di tale valore (es. usando una valvola bypass di ricircolo).

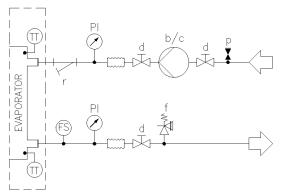


Fig. 9 – Schema idraulico senza pompa/e a bordo (pressione massima operativa 20 bar)

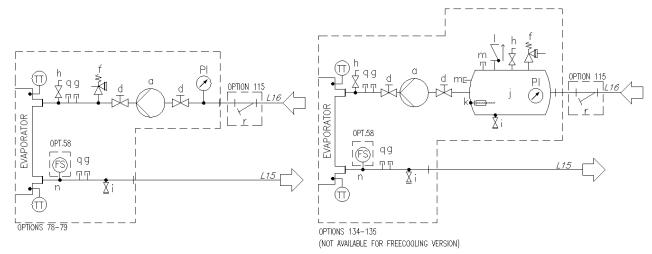


Fig. 10 – Schema idraulico per pompa singola single V (EWATxx5B) (opz. 78-79/134-135) (pressione massima operativa 6 bar)

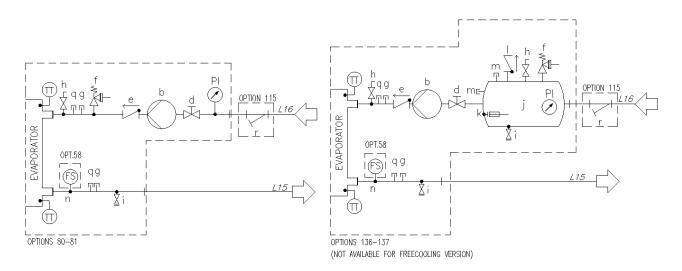


Fig. 11 – Schema idraulico per pompa doppia single V (EWATxx5B) (opz. 80-81/136-137) (pressione massima operativa 6 bar)

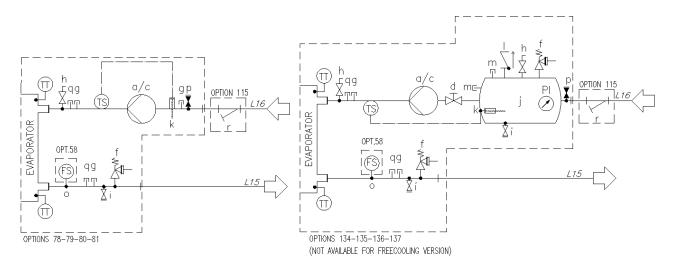


Fig. 12 - Schema idraulico per Modular V (EWATxx0B) (opz. 78-79-80-81/134-135-136-137) (pressione massima operativa 6 bar)

Legenda

а	Pompa singola	I	Valvola di non ritorno
b	Configurazione in parallelo di due pompe	m	Raccordo chiuso
С	Pompa doppia	n	Raccordo flussostato 1"
d	Valvola	0	Raccordo flussostato ½"
е	Valvola di non ritorno	р	Raccordo valvola di riempimento automatico
f	Valvola di sicurezza	q	Raccordo chiuso
g	Raccordo chiuso	r	Filtro dell'acqua
h	Sfiato	TT	Sensore di temperatura
i	drenaggio	TS	Interruttore termico
j	Serbatoio	PI	Manometro
k	Radiatore elettrico	FS	Flussostato

4.7 Trattamento dell'acqua

Prima di azionare l'unità pulire il circuito idraulico.

L'evaporatore/gli evaporatori non deve/devono essere esposto/i alle velocità di lavaggio o a detriti rilasciati durante il lavaggio. Si raccomanda di installare un sistema di by-pass con valvola, opportunamente dimensionato, per permettere il lavaggio del sistema di tubazioni. Il bypass può essere usato durante la manutenzione per isolare lo scambiatore di calore senza interrompere il flusso alle altre unità.

Qualsiasi danno dovuto alla presenza di corpi estranei o detriti nell'evaporatore non sarà coperto da garanzia. Sporco, calcare, detriti da corrosione e altro materiale possono accumularsi all'interno dello scambiatore di calore riducendone la capacità di scambio termico. Può verificarsi anche un aumento del calo pressione, con conseguente riduzione del flusso dell'acqua. Il trattamento corretto dell'acqua riduce pertanto il rischio di corrosione, erosione, incrostazioni, ecc. Il trattamento dell'acqua più indicato deve essere stabilito in loco in base al tipo di sistema e alle caratteristiche dell'acqua.

Il produttore non sarà responsabile per eventuali danni o malfunzionamenti dell'apparecchiatura causati da mancato o improprio trattamento dell'acqua.

Tabella 4- Limiti di qualità dell'acqua accettabili

Requisiti di qualità dell'acqua DAE	Fascio tubiero + allagato	ВРНЕ
pH (25°C)	6.8 – 8.4	7.5-9.0
Conduttività elettrica (25°C)	< 2000 μS/cm	<500 μS/cm
Ione cloruro	< 150 mg Cl ⁻ /l	
Cloro molecolare	< 5 mg Cl2/	<1.0ppm
Ione solfato (SO ₄ /I)	< 100 mg SO ₄ /I	<100 ppm
Alcalinità	< 200 mg CaCO₃/I	
Durezza totale	130-300 mg CaCO₃/l	4.,5-8.5 °dH
Ferro	< 5.0 mg Fe/l	
Rame	< 1.0 mg Cu/l	-
Ione ammonio (NH3)	< 1.0 mg NH ₄ +/l	<0.5ppm
Silice	50 mg SiO₂/I	
Ossigeno disciolto	< 8 mg/l	
Totale solidi disciolti	< 1500 mg/l	
Idrogenocarbonato (HCO)		60-200 ppm
(HCO)/(SO4)		>0.5
(Ca+Mg)/(HCO)		>1.6

4.8 Stabilità di funzionamento e contenuto minimo di acqua nell'impianto

Per il corretto funzionamento delle macchine è importante garantire un minimo contenuto di acqua all'interno dell'impianto, evitando un numero eccessivo di avviamenti e fermate del compressore. Infatti, ogni volta che il compressore entra in funzione, una eccessiva quantità di olio dal compressore entra in circolo nel circuito del refrigerante e contemporaneamente si ha un aumento della temperatura dello statore del compressore stesso, generata dalla corrente di spunto dell'avviamento. Così per evitare danni ai compressori, il sistema di controllo permette non più di 10 avviamenti all'ora. L'impianto dove è installata l'unità deve quindi garantire che il contenuto complessivo di acqua permetta un funzionamento costante dell'unità stessa e di conseguenza anche un maggiore comfort ambientale.

Il minimo contenuto d'acqua per unità può essere calcolato con una certa approssimazione tramite la seguente formula deve essere calcolato considerando le seguenti specifiche:

$$M[l] = m\left[\frac{l}{kW}\right] * CC[kW]$$

dove:

M = minimo contenuto d'acqua per unità, espresso in litri [I]; CC = potenza frigorifera (Cooling Capacity), espressa in kiloWatt [kW];

m = contenuto d'acqua specifico [l/kW].

Modello	m
EWATxxxB-XXA1	5 l/kW
EWATxxxB-XXA2	2,5 l/kW

Nota: La formula di calcolo appena descritta tiene conto di diversi fattori come il tempo di arresto del compressore e la differenza di temperature ammissibile tra lo spegnimento e la riaccensione dell'ultimo compressore. A tale proposito, il minimo contenuto d'acqua calcolato si riferisce al funzionamento della macchina in un normale impianto di climatizzazione. Qualora fosse necessaria una maggiore stabilità di funzionamento, si consiglia di raddoppiare il contenuto d'acqua calcolato. Per la determinazione più accurata della quantità d'acqua, è consigliabile contattare il progettista dell'impianto. In impianti molto semplici, potrebbe essere necessario inserire nel circuito idraulico un serbatoio di accumulo inerziale che permetta il raggiungimento del minimo volume d'acqua richiesto. L'inserimento di questo componente deve garantire la corretta miscelazione dell'acqua e pertanto si consiglia di scegliere un serbatoio che abbia nel suo interno dei diaframmi dedicati a questo scopo.

4.9 Protezione antigelo per evaporatore e scambiatori di recupero

Tutti gli evaporatori sono dotati di una resistenza elettrica a controllo termostatico che fornisce una protezione antigelo adeguata a temperature fino a -18°C.

Possono essere usati tuttavia ulteriori metodi per contrastare il fenomeno del congelamento, a condizione che gli scambiatori di calore siano stati svuotati completamente e puliti con soluzione antigelo.

Quando si progetta l'intero sistema vanno considerati due o più metodi di protezione descritti di seguito:

- circolo continuo del flusso d'acqua all'interno delle tubazioni e degli scambiatori;
- aggiunta della quantità appropriata di glicole all'interno del circuito idraulico;
- riscaldamento e isolamento termico aggiuntivo delle tubazioni esposte;
- se l'unità non viene usata per l'intera stagione invernale, svuotare e pulire lo scambiatore di calore.
 È responsabilità dell'installatore e/o del personale addetto alla manutenzione locale assicurarsi che vengano utilizzati i metodi antigelo descritti. Assicurarsi che sia sempre mantenuta un'appropriata protezione antigelo. Il mancato rispetto delle istruzioni riportate sopra può essere causa di guasti all'unità.

Danni causati dal congelamento sono esclusi dalla garanzia, pertanto la Daikin Applied Europe S.p.A declina ogni responsabilità

5.1 Connessioni elettriche

Prevedere un circuito elettrico per il collegamento dell'unità. Essa deve essere collegata con i cavi in rame di adeguata sezione relativa ai valori di assorbimento di targa ed in accordo alle normative elettriche vigenti.

La Daikin Applied Europe S.p.A. declina ogni responsabilità per un inadeguato collegamento elettrico.

Le connessioni ai terminali devono essere realizzate con terminali e cavi di rame, altrimenti potrebbe verificarsi un surriscaldamento o la corrosione nei punti di collegamento con il rischio di danneggiare l'unità. Il collegamento elettrico deve essere effettuato da personale qualificato, in conformità alle leggi in vigore. Esiste il rischio di scosse elettriche.

L'alimentazione elettrica all'unità deve essere predisposta in modo tale che possa essere accesa o spenta indipendentemente da quella di altri componenti dell'impianto e delle altre apparecchiature in generale, per mezzo di un interruttore generale.

Il collegamento elettrico del pannello deve essere effettuato mantenendo la corretta sequenza delle fasi. Consultare lo schema elettrico specifico per l'unità acquistata. Se lo schema elettrico non si trova sull'unità o se è stato perso, contattare il proprio rappresentante del produttore che provvederà a inviarne una copia. In caso di discrepanza tra schema elettrico e pannello/cavi elettrici, contattare il rappresentante del produttore.

Non applicare torsione, trazione o peso ai morsetti dell'interruttore principale. I cavi della linea di alimentazione devono essere sostenuti da sistemi adeguati.

Per evitare interferenze, tutti i fili di comando devono essere collegati separatamente dai cavi di alimentazione. A tale scopo usare diversi condotti di passaggio elettrici.

La contemporaneità di carichi mono e trifase e lo squilibrio tra fasi può causare perdite verso terra fino a 150 mA durante il normale funzionamento delle unità. Se l'unità comprende dispositivi che generano armoniche superiori, come inverter o taglio di fase, le perdite verso terra possono aumentare fino a valori molto maggiori, circa 2 A.

Le protezioni per il sistema di alimentazione elettrica devono essere progettate in base ai valori sopra menzionati. Deve essere presente un fusibile su ciascuna fase e, dove previsto dalle leggi nazionali del Paese di installazione, un rilevatore di dispersioni verso terra.

Questo prodotto è conforme agli standard EMC (Electromagnetic Compatibility) per ambienti industriali. Esso non è quindi destinato all'utilizzo in aree residenziali, ad esempio installazioni dove il prodotto sia collegato a un sistema di distribuzione pubblico a bassa tensione. Nel caso in cui si debba collegare il prodotto a un sistema di distribuzione pubblico a bassa tensione, dovranno essere adottate specifiche misure addizionali per evitare interferenze con altre apparecchiature sensibili.

Prima di qualsiasi lavoro di connessione elettrica al motore del compressore e/o ai ventilatori, assicurarsi che il sistema sia spento e l'interruttore generale dell'unità aperto. Il mancato rispetto di questa regola può causare gravi lesioni personali.

5.1.1 Requisiti dei cavi

I cavi collegati all'interruttore devono rispettare la distanza d'isolamento in aria e la distanza d'isolamento superficiale tra i conduttori attivi e la massa, in accordo alla IEC 61439-1 tabella 1 e 2, e alle leggi nazionali locali. I cavi collegati all'interruttore principale devono essere serrati utilizzando una coppia di chiavi e rispettando i valori unificati di serraggio, relativi alla qualità delle viti delle rosette e dei dadi usati.

Collegare il conduttore di terra (giallo/verde) al terminale PE di terra.

Il conduttore equipotenziale di protezione (conduttore di terra), deve avere una sezione secondo la tabella 1 della EN 60204-1 Punto 5.2, di seguito riportata.

Comunque sia il conduttore equipotenziale di protezione (conduttore di terra), deve avere una sezione non inferiore a 10 mm2, in conformità al Punto 8.2.8 della stessa norma.

5.2 Sbilanciamento delle fasi

In un sistema trifase l'eccessivo sbilanciamento tra le fasi è la causa del surriscaldamento del motore. Il massimo sbilanciamento di tensione permesso è del 3%, calcolato nel seguente modo:

Sbilanciamento
$$\% = \frac{(Vx - Vm) * 100}{Vm}$$

dove:

Vx = fase con maggior sbilanciamento

Vm = media delle tensioni

Esempio: le tre fasi misurano rispettivamente 383, 386 e 392 V. La media è:

$$\frac{383 + 386 + 392}{3} = 387 V$$

La percentuale di sbilanciamento è:

$$\frac{(392 - 387) * 100}{387} = \mathbf{1.29} \%$$

minore del massimo ammesso (3%).

6 RESPONSABILITÀ DELL'OPERATORE

È essenziale che l'operatore riceva un'adeguata formazione professionale e acquisisca familiarità con il sistema prima di usare l'unità. Oltre a leggere il presente manuale, l'operatore deve studiare il manuale operativo del microprocessore e lo schema elettrico per poter comprendere la sequenza di avvio e di arresto, il funzionamento generale e quello di tutti i dispositivi di sicurezza.

Durante la fase di avvio iniziale dell'unità, un tecnico autorizzato dal produttore è disponibile a rispondere a qualsiasi domanda e a dare istruzioni sulle corrette procedure di funzionamento.

L'operatore deve mantenere una registrazione dei dati di funzionamento per ciascuna unità installata. Un'altra registrazione deve essere tenuta anche per tutte le attività periodiche di manutenzione e assistenza.

Se l'operatore nota condizioni operative anomale o insolite, deve consultare il servizio tecnico autorizzato dal produttore.

Se l'unità viene spenta, non è possibile utilizzare le resistenze di riscaldamento del compressore. Una volta ricollegata l'unità alla rete elettrica, lasciare sotto carica le resistenze di riscaldamento del compressore per almeno 12 ore prima di riavviare l'unità.

La mancata osservanza di questa norma può causare danni ai compressori dovuti all'accumulo eccessivo di liquido al loro interno.

Questa unità rappresenta un sostanziale investimento e merita le attenzioni e le cure per mantenere questa apparecchiatura in buone condizioni di funzionamento.

Durante il funzionamento e la manutenzione è essenziale comunque osservare le seguenti istruzioni:

- non consentire a personale non autorizzato e/o non qualificato di accedere all'unità;
- è vietato accedere ai componenti elettrici senza aver prima aperto l'interruttore principale dell'unità e disattivato l'alimentazione elettrica;
- È vietato accedere ai componenti elettrici senza l'impiego di una piattaforma isolante. Non accedere ai componenti elettrici in presenza di acqua e/o umidità;
- verificare che tutte le operazioni sul circuito refrigerante e sui componenti sotto pressione vengano eseguite esclusivamente da personale qualificato;
- la sostituzione dei compressori deve essere effettuata esclusivamente da personale qualificato;
- I bordi taglienti e la superficie della sezione del condensatore possono causare lesioni. Evitare il contatto diretto e usare dispositivi di protezione adequati;
- non introdurre oggetti solidi nei tubi dell'acqua quando l'unità è collegata al sistema;
- è assolutamente vietato rimuovere tutte le protezioni dei componenti mobili.

In caso di arresto improvviso dell'unità, seguire le istruzioni riportate nel Manuale d'istruzione del pannello di controllo che fa parte della documentazione a bordo dell'unità consegnata all'utilizzatore finale.

Si consiglia vivamente di eseguire le operazioni di installazione e manutenzione insieme ad altre persone.

In caso di lesioni accidentali o problemi, comportarsi come segue:

- mantenere la calma;
- premere il pulsante di allarme, se presente nel sito di installazione;
- contattare immediatamente il personale di emergenza presente nell'edificio o presso un servizio di pronto soccorso:
- attendere l'arrivo degli operatori senza lasciare la persona ferita da sola;
- fornire tutte le informazioni necessarie agli operatori del pronto soccorso.

Evitare di installare il chiller in aree che potrebbero presentare dei pericoli durante le operazioni di manutenzione, come piattaforme senza parapetti, guide o aree non conformi ai requisiti che impongono di lasciare uno spazio libero intorno al chiller.

7 MANUTENZIONE

Il personale incaricato della manutenzione deve essere autorizzato, istruito e pienamente qualificato.

Attività di manutenzione e riparazione che richiedono l'assistenza di altro personale qualificato devono essere effettuate sotto la supervisione di personale competente sull'uso di refrigeranti infiammabili. Qualsiasi persona che conduce attività o manutenzione sul sistema o su parti associate deve essere competente in accordo alla EN 13313.

Il personale che lavora su gli impianti con refrigeranti infiammabili dovrebbe avere competenza, supportata dall'evidenza di formazione appropriata, negli aspetti di sicurezza legati alla movimentazione dei refrigeranti infiammabili.

Proteggere sempre il personale operativo con appropriati DPI. I dispositivi individuali comuni sono: elmetto di protezione, occhiali, guanti, cappelli, scarpe di sicurezza. Ulteriori dispositivi di protezione individuali e di gruppo dovrebbero essere adottati dopo un'adeguata analisi dei rischi specifici nell'area di interesse, in relazione alle attività che devono essere fatte.

Componenti Non lavorare mai su componenti elettrici finché l'alimentazione generale della macchina non è elettrici stata interrotta attraverso il sezionatore generale presente sul quadro elettrico. Gli inverter, quando presenti, sono dotati di batterie capacitive con un tempo di scarica di 20 minuti; dopo aver interrotto l'alimentazione della macchina aspettare almeno 20 minuti prima di aprire il quadro elettrico. Sistema Prima di lavorare sul circuito refrigerante dovrebbero essere adottate le precauzioni sequenti: refrigerazione Ottenere l'autorizzazione per i lavori a caldo (se richiesta); — Verificare che nell'area di lavoro non siano depositati materiali infiammabili e che in nessun punto dell'area di lavoro siano presenti sorgenti di ignizione; Verificare che sia disponibile attrezzatura per l'estinzione del fuoco adatta; Verificare che l'area di lavoro sia adeguatamente ventilata prima di intervenire sul circuito refrigerante o prima di effettuare operazioni di saldatura o brasatura; - Verificare che l'attrezzatura utilizzata per il rilevamento delle perdite non produca scintille e sia adeguatamente sigillata o a sicurezza intrinseca; - Verificare che tutto il personale addetto alla manutenzione sia istruito. Prima di lavorare sul circuito refrigerante dovrebbe essere esequita la procedura sequente: rimuovere il refrigerante (specificare la pressione residua); flussare il circuito con gas inerte (per esempio azoto); evacuare a pressione di 0,3 bar (ass.) (o 0,03 MPa); flussare di nuovo con gas inerte (per esempio azoto); aprire il circuito. L'area dovrebbe essere controllata con apposito rivelatore di refrigerante prima e dopo I lavori a caldo per rendere il tecnico consapevole dell'atmosfera potenzialmente infiammabile. Se sono da rimuovere compressori o oli dei compressori si dovrebbe assicurare che il livello di vuoto sia sufficiente a garantire che non vi sia refrigerante infiammabile residuo nel lubrificante. Dovrebbero essere utilizzate solo apparecchiature di recupero del refrigerante progettate per l'uso con refrigeranti infiammabili. Se le disposizioni e i regolamenti nazionali consentono che il refrigerante sia scaricato, questo dovrebbe essere effettuato in modo sicuro, utilizzando per esempio un tubo flessibile attraverso il quale il fluido possa essere scaricato nell'atmosfera esterna verso un'area sicura. Si dovrebbe garantire che non possa formarsi una concentrazione esplosiva infiammabile di refrigerante in prossimità di una sorgente di ignizione, o che non penetri in alcuna circostanza all'interno dell'edificio. Nel caso di impianti di refrigerazione con sistema indiretto, il mezzo termovettore dovrebbe essere controllato per verificare la possibile presenza di refrigerante. Dopo ogni intervento di riparazione, dovrebbe essere verificata e registrata la funzionalità dei dispositivi di sicurezza, come i rivelatori di refrigerante e i sistemi di ventilazione meccanica. Si dovrebbe garantire che tutte le etichette mancanti o illeggibili sui componenti del circuito refrigerante siano sostituite. Nessuno dovrebbe utilizzare una sorgente di ignizione per la ricerca di una perdita di refrigerante.

7.1 Tabella Pressione/Temperatura

Tabella 5- Pressione/Temperatura dell'R32

°C	Bar	°C	Bar	°C	Bar	°C	Bar
-28	2,97	-2	7,62	24	16,45	50	31,41
-26	3,22	0	8,13	26	17,35	52	32,89
-24	3,48	2	8,67	28	18,30	54	34,42
-22	3,76	4	9,23	30	19,28	56	36,00
-20	4,06	6	9,81	32	20,29	58	37,64
-18	4,37	8	10,43	34	21,35	60	39,33
-16	4,71	10	11,07	36	22,45	62	41,09
-14	5,06	12	11,74	38	23,60	64	42,91
-12	5,43	14	12,45	40	24,78	66	44,79
-10	5,83	16	13,18	42	26,01	68	46,75
-8	6,24	18	13,95	44	27,29	70	48,77
-6	6,68	20	14,75	46	28,61	72	50,87
-4	7,14	22	15,58	48	29,99	74	53,05

7.2 Manutenzione ordinaria

La manutenzione del chiller deve essere eseguita da tecnici qualificati. Prima di iniziare qualsiasi intervento sul sistema, il personale deve assicurarsi che siano state adottate tutte le precauzioni di sicurezza.

La mancata manutenzione dell'unità potrebbe degradare tutte i componenti delle unità (condensatori ad aria, compressori, telai, tubazioni, ecc.) con ripercussioni negative sulle prestazioni e sulla funzionalità.

Le valvole di intercettazione devono essere attivate almeno una volta l'anno per evitare che si rovinino.

Esistono due differenti livelli di manutenzione tra cui scegliere in base al tipo di applicazione (critica/non critica) o all'ambiente di installazione (altamente aggressivo).

Esempi di applicazioni critiche sono il raffreddamento di processo, i centri dati, ecc.

Gli Ambienti Altamente Aggressivi possono essere definiti come di seguito indicato:

- ambiente industriale (con possibile concentrazione di fumi prodotti da combustione e processi chimici);
- ambiente costiero;
- ambiente urbano altamente inquinato;
- ambiente rurale in prossimità di escrementi animali e fertilizzanti, e concentrazione elevata di gas di scarico da generatori diesel;
- aree desertiche con rischio di tempeste di sabbia;
- combinazioni di tali elementi.

La Tabella 7 elenca tutte le attività di Manutenzione per applicazioni standard e ambiente standard.

La Tabella 8 elenca tutte le attività di Manutenzione per applicazioni critiche o ambiente altamente aggressivo.

Un'unità esposta a un ambiente altamente aggressivo può andare incontro a corrosione più rapidamente rispetto alle unità installate in un ambiente standard. La corrosione provoca una rapida formazione di ruggine nel nucleo del telaio, riducendo quindi la durata strutturale dell'unità. Per evitare che ciò avvenga, è necessario lavare periodicamente le superfici del telaio con acqua e detergenti idonei.

Nel caso in cui parte della verniciatura del telaio dell'unità si sia staccata, è importante arrestarne il progressivo deterioramento riverniciando le parti esposte con prodotti appropriati. Contattare lo stabilimento di produzione per ottenere le specifiche dei prodotti necessari.

Nel caso in cui siano presenti soltanto depositi di sale, è sufficiente risciacquare le parti con acqua dolce.

7.2.1 Manutenzione condensatore ad aria a micro-canali

La pulizia ordinaria delle superfici del condensatore ad aria è essenziale per mantenere un funzionamento corretto dell'unità, evitare la corrosione e la formazione di ruggine. L'eliminazione della contaminazione e la rimozione dei residui dannosi consentiranno di estendere notevolmente la durata della bobina e dell'unità stessa.

Rispetto agli scambiatori di calore ad alette e a tubi, le bobine a micro-canali tendono ad accumulare lo sporco più sulla superficie che non all'interno, risultando così più facili da pulire.

Si raccomandano le seguenti procedure di manutenzione e pulizia nell'ambito delle attività di manutenzione ordinaria:

1. Rimuovere sporco, foglie, fibre, ecc. dalla superficie con un aspiratore (preferibilmente con una spazzola o un altro accessorio morbido anziché con un tubo di metallo), aria compressa soffiata dall'interno verso l'esterno e/o una spazzola a setole morbide (non a fili metallici!). Evitare di urtare o raschiare lo scambiatore con il tubo dell'aspiratore, l'ugello dell'aria, ecc.

Nota: Se si dirige un getto d'acqua, come quello di un tubo da giardinaggio, contro una bobina sporca in superficie, le fibre e lo sporco vengono spinte all'interno della bobina stessa. Ciò rende più difficoltose le operazioni di pulizia. Le fibre accumulate in superficie devono essere completamente rimosse prima di procedere al risciacquo con acqua pulita a bassa pressione.

2. Risciacquare. Non utilizzare sostanze chimiche (neppure quelle pubblicizzate come adatte alla pulizia delle bobine) per lavare gli scambiatori di calore a micro-canali. Tali sostanze, infatti, possono provocare corrosione. Risciacquare solamente. Innaffiare delicatamente lo scambiatore di calore a micro-canali, preferibilmente dall'interno verso l'esterno e dall'alto verso il basso, facendo scorrere l'acqua attraverso tutti i passaggi delle alette fino a pulizia completata. Le alette a micro-canali sono più robuste delle tradizionali alette delle bobine a tubi e ad alette, ma devono comunque essere maneggiate con cura.

È possibile pulire una bobina con un sistema di lavaggio ad alta pressione (max 62 barg) solo se il getto d'acqua utilizzato è di forma piatta e se la sua direzione è mantenuta perpendicolare rispetto al bordo delle alette. **Se non si mantiene tale direzione la bobina potrebbe andare distrutta** in caso di utilizzo di un sistema di lavaggio a pressione, per cui se ne sconsiglia l'utilizzo.

Nota: Si raccomanda un risciacquo con acqua pulita mensile per le bobine impiegate in ambienti costieri o industriali, per facilitare la rimozione di cloruri, sporco e detriti. È molto importante che durante il risciacquo la temperatura dell'acqua sia inferiore a 55 °C. Una temperatura dell'acqua elevata (non oltre i 55 °C) riduce la tensione superficiale, migliorando la capacità di rimozione di cloruri e sporco.

3. La pulizia trimestrale è essenziale per prolungare la durata di una bobina con verniciatura elettroforetica ed è obbligatoria per mantenere la copertura della garanzia. La mancata pulizia di una bobina con verniciatura elettroforetica invalida la garanzia e potrebbe comportare una riduzione dell'efficienza e della durata nell'ambiente. Per la pulizia trimestrale ordinaria, pulire dapprima la bobina con un detergente per bobine approvato. Dopo aver pulito le bobine con il detergente approvato, utilizzare il prodotto approvato per la rimozione dei cloruri per rimuovere i sali solubili e rivitalizzare l'unità.

Nota: Evitare di utilizzare sostanze chimiche corrosive, candeggina per uso domestico o detergenti acidi per pulire le bobine con verniciatura elettroforetica. Questi detergenti, infatti, possono risultare molto difficili da risciacquare e possono accelerare la corrosione della bobina e attaccare la sua verniciatura elettroforetica. Se è presente dello sporco sotto la superficie della bobina, utilizzare i detergenti per bobine raccomandati come descritto sopra.

Le connessioni rame/alluminio possono essere soggette a corrosione galvanica sotto la protezione di plastica; durante le operazioni di manutenzione o la pulizia periodica controllare l'aspetto delle protezioni di plastica delle giunzioni rame/alluminio. Se risultano gonfie, danneggiate o staccate contattare il rappresentante del fabbricante per indicazioni e informazioni in merito.

7.2.2 Impianto elettrico

Tutte le attività di manutenzione elettrica devono essere seguite da personale qualificato. Assicurarsi che il sistema sia spento e l'interruttore generale dell'unità aperto. Il mancato rispetto di questa regola può causare gravi lesioni personali. Quando l'unità è spenta ma l'interruttore di disconnessione è in posizione chiusa, i circuiti non utilizzati saranno comunque attivi.

La manutenzione dell'impianto elettrico consiste nell'applicazione di alcune norme generali come di seguito descritto:

- la corrente assorbita dal compressore deve essere confrontata con il valore di targa. Normalmente il valore della corrente assorbita è inferiore del valore di targa che corrisponde all'assorbimento del compressore a pieno carico alle massime condizioni operative;
- 2. almeno una volta ogni tre mesi tutti i controlli di sicurezza devono essere fatti intervenire per verificarne la funzionalità. Ciascun apparecchio, con l'invecchiamento, può cambiare il suo punto di funzionamento e questo deve essere monitorato per eventualmente aggiustarlo o sostituirlo. Gli interblocchi delle pompe e i flussostati devono essere verificati per assicurarsi che interrompano il circuito di controllo qualora intervenissero.

7.2.3 Assistenza e garanzia limitata

Tutte le unità sono testate in fabbrica e garantite per 12 mesi dal primo avvio o 18 mesi dalla data di consegna.

Queste sono state sviluppate e costruite nel rispetto degli standard qualitativi più elevati e con la garanzia pluriennale di un funzionamento corretto e privo di guasti. **Tuttavia l'unità richiede manutenzione anche durante il periodo della garanzia, dal momento dell'installazione e non solo dalla data di messa in funzione.** Si consiglia vivamente di stipulare un contratto di manutenzione con un'assistenza autorizzata dal produttore al fine di garantire prestazioni efficienti e senza problemi, grazie alla competenza e all'esperienza del nostro personale.

Si tenga presente che un uso improprio dell'unità, per esempio oltre i limiti operativi, o una manutenzione non conforme a quanto indicato nel presente manuale, può rendere nulla la garanzia.

È importante osservare i seguenti punti per rispettare i limiti della garanzia:

- 1. l'unità non può funzionare oltre i limiti specificati;
- l'alimentazione elettrica deve rientrare nei limiti di tensione ed essere priva di armoniche o improvvisi cambiamenti di tensione;
- 3. l'alimentazione trifase non deve presentare uno squilibrio tra fasi superiore al 3%. L'unità deve rimanere spenta finché il problema elettrico non è stato risolto;
- 4. non disabilitare o annullare nessun dispositivo di sicurezza, sia esso meccanico, elettrico o elettronico;

- 5. L'acqua usata per riempire il circuito idraulico deve essere pulita e trattata adeguatamente. Nel punto più vicino all'ingresso dell'evaporate deve essere installato un filtro meccanico. Se l'unità è dotata dell'opzione di free-cooling completo, il filtro meccanico va installato nella tubazione dell'acqua comune a monte degli evaporatori;
- 6. il valore della portata d'acqua dell'evaporatore deve essere compreso nel range dichiarato per l'unità considerata, fare riferimento al software di selezione CSS.

Tabella 6- Programma di manutenzione ordinaria standard

Elenco delle attività	Settimanali	Mensili (Nota 1)	Annuali/ stagionali (Nota 2)
Generale:			
Lettura dei dati operativi (Nota 3)	Х		
Ispezione visiva dell'unità per eventuali danni e/o allentamenti		Х	
Verifica dell'integrità dell'isolamento termico			Х
Pulizia e verniciatura dove necessario			Х
Analisi dell'acqua (Nota 4)			Х
Controllo del funzionamento del flussostato		Х	
Impianto elettrico:			
Verifica delle sequenze di controllo			Х
Verifica dell'usura del contattore – sostituire se necessario			Х
Verifica del corretto serraggio di tutti i terminali elettrici – serrare se necessario			Х
Pulizia all'interno del pannello di controllo elettrico			Х
Ispezione visiva dei componenti per eventuali segni di surriscaldamento		Χ	
Verificare il funzionamento del compressore e della resistenza elettrica		Χ	
Misura dell'isolamento del motore del compressore con l'impiego del Megger			X
Pulire i filtri di ingresso dell'aria del pannello elettrico		Х	
Verifica del funzionamento del sistema di ventilazione nel pannello elettrico			X
Circuito di refrigerazione:			
Controllo della presenza di eventuali perdite di refrigerante (prova fughe)		Χ	
Verifica del livello del refrigerante tramite il vetro di ispezione visiva che deve essere completamente sommerso dal liquido	X		
Verifica del calo di pressione del filtro deidratatore		Х	
Analisi delle vibrazioni del compressore			Х
Analisi dell'acidità dell'olio del compressore (Nota 7)			Х
Verificare la valvola di sicurezza (Nota 5)		Х	
Sezione del condensatore:			
Verifica della pulizia delle batterie condensanti e degli scambiatori di calore ad			Х
acqua (Nota 6)			
Verifica del corretto serraggio delle ventole			Х
Verifica delle alette delle batterie condensanti– rimuovere se necessario			Х
Evaporatore/evaporatori:			
Controllare se è pulito il BHPE e, se è disponibile l'opzione del free-cooling completo, anche i tubi degli scambiatori di calore a fascio tubiero (nota 6)			x

Note:

- 1. Le attività mensili comprendono tutte quelle settimanali.
- 2. Le attività annuali (o di inizio stagione) comprendono anche quelle settimanali e mensili.
- 3. La lettura giornaliera dei valori operativi dell'unità consente di mantenere elevati standard di osservazione.
- 4. Controllare la presenza di eventuali metalli disciolti.
- 5. Controllare che il cappellotto e il sigillo non siano stati manomessi. Controllare che l'attacco di scarico delle valvole di sicurezza non sia accidentalmente occluso da oggetti estranei, ruggine o ghiaccio. Controllare la data di fabbricazione posta sulla valvola di sicurezza e sostituirla, se necessario, in conformità alle leggi nazionali vigenti.
- 6. Pulire i banchi del condensatore con acqua pulita e gli scambiatori di calore ad acqua con appositi prodotti chimici. Particelle e fibre potrebbero intasare gli scambiatori, in particolare per gli scambiatori ad acqua fare attenzione se viene utilizzata acqua ricca di carbonato di calcio. Un aumento delle perdite di carico o un calo di efficienza termica indica che gli scambiatori di calore sono intasati. In ambienti con un'elevata concentrazione di particelle trasportate dall'aria, potrebbe essere necessario pulire il banco del condensatore più spesso.
- 7. TAN (Numero di acidi totale): ≤ 0,10: nessuna azione

Tra 0.10 e 0.19: sostituire i filtri antiacido e ricontrollare dopo 1000 ore operative. Continuare a sostituire i filtri finché il TAN non è inferiore a 0,10.

>0,19: sostituire l'olio, il filtro dell'olio e il deidratatore del filtro. Verificare a intervalli regolari.

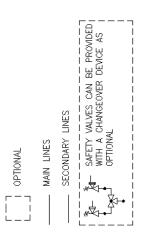

8. Le unità collocate o conservate in un Ambiente Altamente Aggressivo per periodi di inutilizzo prolungati sono comunque soggette agli stessi passaggi di manutenzione ordinaria.

Tabella 7- Programma di manutenzione ordinaria per applicazione critica e/o ambiente altamente aggressivo

Elenco delle attività (Nota 8)	Settimanali	Mensili (Nota 1)	Annuali/Stagionali (Nota 2)
		(1131211)	(
Generale:			
Lettura dei dati operativi (Nota 3)	Х		
Ispezione visiva dell'unità per eventuali danni e/o allentamenti		Х	
Verifica dell'integrità dell'isolamento termico			Х
Pulizia		Х	
Verniciatura dove necessario			X
Analisi dell'acqua (Nota 4)			Х
Controllo del funzionamento del flussostato		Х	
Impianto elettrico:			
Verifica delle sequenze di controllo			X
Verifica dell'usura del contattore – sostituire se necessario			Х
Verifica del corretto serraggio di tutti i terminali elettrici - serrare se			X
necessario			
Pulizia all'interno del pannello di controllo elettrico		Х	
Ispezione visiva dei componenti per eventuali segni di surriscaldamento		Х	
Verificare il funzionamento del compressore e della resistenza elettrica		Х	
Misura dell'isolamento del motore del compressore con l'impiego del			Х
Megger			
Pulire i filtri di ingresso dell'aria del pannello elettrico		Х	
Verifica del funzionamento di tutte le ventole di ventilazione nel pannello			X
elettrico			
Circuito di refrigerazione:			
Controllo della presenza di eventuali perdite di refrigerante (prova fughe)		X	
Verifica del livello del refrigerante tramite il vetro di ispezione visiva che	X		
deve essere completamente sommerso dal liquido			
Verifica del calo di pressione del filtro deidratatore		X	
Analisi delle vibrazioni del compressore			X
Analisi dell'acidità dell'olio del compressore (Nota 7)			X
Verificare la valvola di sicurezza (Nota 5)		X	
Sezione del condensatore:			
Verifica della pulizia del raffreddatore ad aria (Nota 6)		X	
Verifica della pulizia degli scambiatori di calore ad acqua (Nota 6)			X
Pulizia trimestrale delle bobine del condensatore (solo verniciatura			X
elettroforetica)			
Verifica del corretto serraggio delle ventole			X
Verifica delle alette delle bobine del condensatore – rimuovere se		Х	
necessario			
Controllo dell'aspetto della protezione di plastica sulle connessioni		X	
rame/allumino			
Evaporatore/evaporatori:			
Controllare se è pulito il BHPE e, se è disponibile l'opzione del free-cooling			x
completo, anche i tubi degli scambiatori di calore a fascio tubiero (nota 6)			^

Note:

- 8. Le attività mensili comprendono tutte quelle settimanali.
- 9. Le attività annuali (o di inizio stagione) comprendono anche quelle settimanali e mensili.
- 10. La lettura giornaliera dei valori operativi dell'unità consente di mantenere elevati standard di osservazione.
- Controllare la presenza di eventuali metalli disciolti.
- 12. Controllare che il cappellotto e il sigillo non siano stati manomessi. Controllare che l'attacco di scarico delle valvole di sicurezza non sia accidentalmente occluso da oggetti estranei, ruggine o ghiaccio. Controllare la data di fabbricazione posta sulla valvola di sicurezza e sostituirla, se necessario, in conformità alle leggi nazionali vigenti.
- 13. Pulire i banchi del condensatore con acqua pulita e gli scambiatori di calore ad acqua con appositi prodotti chimici. Particelle e fibre potrebbero intasare gli scambiatori, in particolare per gli scambiatori ad acqua fare attenzione se viene utilizzata acqua ricca di carbonato di calcio. Un aumento delle perdite di carico o un calo di efficienza termica indica che gli scambiatori di calore sono intasati. In ambienti con un'elevata concentrazione di particelle trasportate dall'aria, potrebbe essere necessario pulire il banco del condensatore più spesso.
- 14. TAN (Numero di acidi totale): ≤ 0,10: nessuna azione
 - Tra 0.10 e 0.19: sostituire i filtri antiacido e ricontrollare dopo 1000 ore operative. Continuare a sostituire i filtri finché il TAN non è inferiore a 0,10.
 - >0,19: sostituire l'olio, il filtro dell'olio e il deidratatore del filtro. Verificare a intervalli regolari.
- 15. Le unità collocate o conservate in un Ambiente Altamente Aggressivo per periodi di inutilizzo prolungati sono comunque soggette agli stessi passaggi di manutenzione ordinaria.

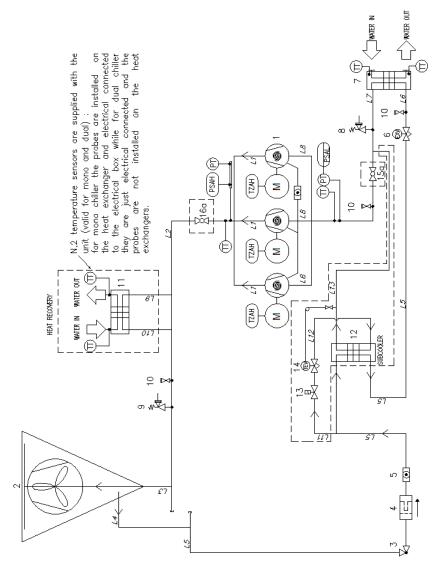


Fig. 13 - Schema del circuito del refrigerante (P&ID) dell'unità mono-circuito standard

Gli ingressi e le uscite dell'acqua sono indicativi. Consultare i disegni dimensionali della macchina per indicazioni più precise sulle connessioni dell'acqua.

Questa serie è composta da chiller mono-circuito e chiller a doppio circuito Ciascun circuito può includere 2 o 3 compressori (configurazione tandem) È riportato un solo circuito

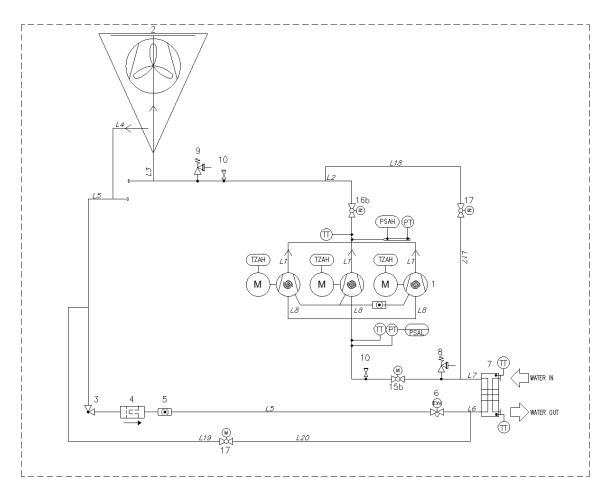


Fig. 14 - Schema del circuito del refrigerante (P&ID) con opzione free-cooling leggero dell'unità mono-circuito Gli ingressi e le uscite dell'acqua sono indicativi. Consultare i disegni dimensionali della macchina per indicazioni più precise sulle connessioni dell'acqua.

Questa serie è composta da chiller mono-circuito e chiller a doppio circuito Ciascun circuito può includere 2 o 3 compressori (configurazione tandem) È riportato un solo circuito

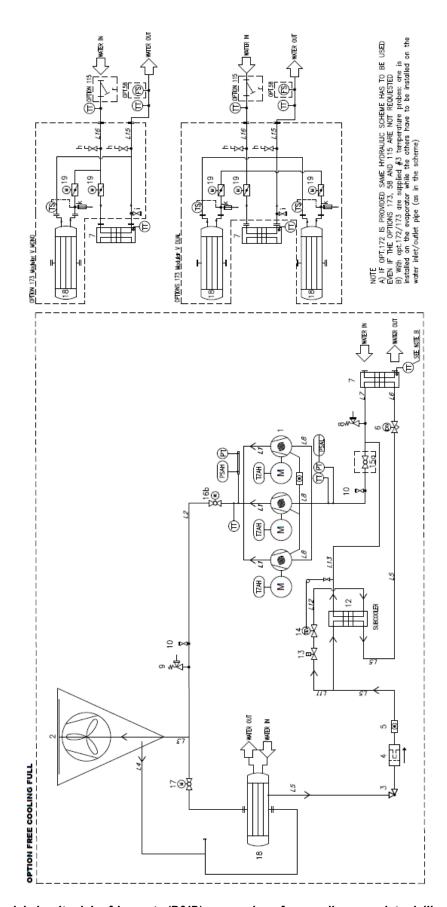


Fig. 15 - Schema del circuito del refrigerante (P&ID) con opzione free-cooling completo dell'unità mono-circuito Gli ingressi e le uscite dell'acqua sono indicativi. Consultare i disegni dimensionali della macchina per indicazioni più precise sulle connessioni dell'acqua.

Questa serie è composta da chiller mono-circuito e chiller a doppio circuito
Ciascun circuito può includere 2 o 3 compressori (configurazione tandem). È riportato un solo circuito
Se l'opz. 172 è disponibile, va usato lo stesso schema idraulico anche se le opzioni 173, 58 e 115 non sono necessarie.

Legenda			
Item	Descrizione		
1	Compressori scroll in configurazione tandem		
2	Condensatore ad aria a micro-canali		
3	Rubinetto ad angolo		
4	Filtro		
5	Spia del liquido (se non presente con 6)		
6	Valvola di espansione elettronica		
7	Evaporatore a piastre		
8	Valvola di sicurezza Bassa Pressione Pt = 24,5 barg		
9	Valvola di sicurezza Alta Pressione Pt = 45 barg		
10	Attacco di carica		
11	Scambiatore a piastre-Recupero di calore (optional)		
12	Scambiatore a piastre-Sottoraffreddatore (optional)		
13	Valvola solenoide (optional)		
14	Valvola di espansione termostatica (optional)		
15	Rubinetto di aspirazione (optional)		
16	Rubinetto di mandata (optional)		
17	Pompe gemellari (optional)		
18	Serbatoio (optional)		
19	Valvola di sicurezza lato acqua (optional)		
20	Valvola di intercettazione (optional)		
PT	Trasduttore di pressione		
TT	Sensore di temperatura		
PSAH	Pressostato di alta pressione (42 barg)		
PSAL	Pressostato di bassa pressione (funzione da controllore)		
TZAH	Termistore motore elettrico		

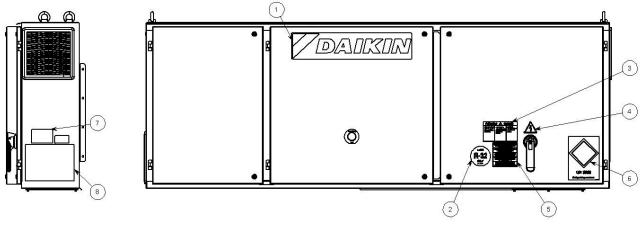


Fig. 16 - Descrizione etichette applicate su quadro elettrico

Identificazione delle etichette

1 – Logo del costruttore	5 – Avviso serraggio cavi
2 – Tipo di gas	6 – Etichetta UN 3358
3 – Avviso di voltaggio pericoloso	7 – Dati della targhetta dell'unità
4 – Simbolo di pericolo elettrico	8 – Istruzioni di sollevamento

L'unità deve essere avviata per la prima volta SOLO da personale autorizzato DAIKIN.

L'unità non deve assolutamente essere messa in funzione, anche se per un brevissimo periodo, senza averla prima controllata minuziosamente compilando contemporaneamente in ogni sua parte la seguente lista.

Tabella 8- Controlli da eseguire prima della messa in funzione dell'unità

Elementi generali	Sì	No	N/D
Verificare la presenza di danni esterni			
Aprire tutte le valvole di isolamento e/o intercettazione			
Verificare che l'unità sia pressurizzata di refrigerante in tutte le sue parti prima di			
eseguire il collegamento con il circuito idraulico.			
Controllare il livello dell'olio nei compressori			
Pozzetti di controllo, termometri, manometri, controlli ecc. installati			
Disponibilità di almeno il 25% del carico della macchina per il test e il Settaggio dei controlli			
Acqua refrigerata	Sì	No	N/D
Completamento tubazioni			
Installare il filtro dell'acqua (anche quando non in dotazione) all'ingresso degli			
scambiatori.			
Installare un flussostato			
Riempimento circuito dell'acqua, spurgo aria			
Installazione pompe, (verifica rotazione), pulizia filtri			
Funzionamento controlli (valvola a tre vie, valvola bypass, smorzatore, ecc.)			
Funzionamento del circuito dell'acqua e bilancio della portata			
Controllare che tutti i sensori dell'acqua siano correttamente fissati nello scambiatore di			
calore			
Circuito elettrico	Sì	No	N/D
Cavi di potenza connessi al Quadro Elettrico			
Avviatore ed interblocco della pompa cablati			
Collegamento elettrico nel rispetto della normativa elettrica locale			
Installare a monte dell'unità un interruttore principale, i fusibili principali e, dove previsto			
dalle leggi nazionali del paese di installazione, un rilevatore di dispersioni verso terra.			
Collegare il/i contatto/i della pompa in serie con il contatto del/dei flussostato/i, in modo tale che l'unità possa azionarsi solo quando le pompe dell'acqua sono in funzione e il flusso dell'acqua è sufficiente.			
Fornire la tensione principale e controllare che rientri nei limiti consentiti del ±10% rispetto alla classificazione riportata sulla targhetta identificativa.			

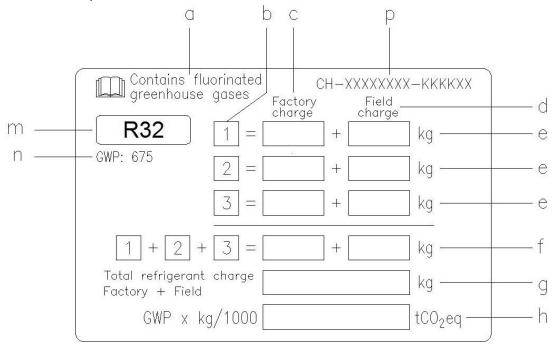
Nota

Questa lista deve essere completata e spedita all'ufficio locale Daikin Service almeno due settimane prima della data di avviamento.

9 IMPORTANTI INFORMAZIONI SUL REFRIGERANTE USATO

Questo prodotto contiene gas fluorurati ad effetto serra. Non far fuoriuscire i gas nell'atmosfera.

Tipo di refrigerante: R32 Valore GWP (potenziale di riscaldamento globale): 675


9.1 Istruzioni per le unità caricate in fabbrica e in campo

Il sistema refrigerante viene caricato con gas fluorurati ad effetto serra e la carica di refrigerante è impressa sulla targa, mostrata di seguito, che è applicata all'interno del pannello elettrico.

- Compilare con inchiostro indelebile l'etichetta della carica del refrigerante fornita con il prodotto in base alle seguenti istruzioni:
 - la carica del refrigerante per ciascun circuito (1; 2; 3) aggiunta durante la messa in servizio (carica in loco)
 - la carica del refrigerante totale (1 + 2 + 3)
 - calcolare l'emissione di gas serra con la seguente formula:

GWP * carico totale [kg]/1000

(utilizzare il valore GWP riportato sull'etichetta. Questo valore GWP si basa sul 4° Rapporto di Valutazione dell'IPCC)

- a Contiene gas serra fluorurati
- b Numero circuito
- c Carica in fabbrica
- d Carica in loco
- e Carica del refrigerante per ciascun circuito (in base al numero dei circuiti)
- f Carica del refrigerante totale
- g Carica del refrigerante totale (in fabbrica + in loco)
- h Emissione di gas serra della carica del refrigerante totale espressa
- m Tipo di refrigerante
- n GWP = potenziale di riscaldamento globale (Global Warming Potential)
- p Numero di serie dell'unità

In Europa, l'emissione di gas serra della carica totale del refrigerante nel sistema (espressa in tonnellate di CO₂ equivalente) è utilizzata per determinare la frequenza degli interventi di manutenzione. Attenersi alle normative vigenti.

10 VERIFICHE PERIODICHE E MESSA IN FUNZIONE DI APPARECCHIATURE A PRESSIONE

Le unità sono incluse nella categoria III e IV della classificazione stabilita dalla Direttiva Europea 2014/68/UE (PED). Per i gruppi frigoriferi appartenenti a tali categorie, alcune leggi locali richiedono un'ispezione periodica da parte di un soggetto autorizzato. Verificare i requisiti locali.

11 DISMISSIONE E SMALTIMENTO

L'unità è realizzata con componenti metallici, plastici ed elettronici. Tutti questi componenti devono essere smaltiti in conformità con le leggi locali in materia di smaltimento e, ove applicabile, con quelle di recepimento della Direttiva 2012/19/UE (RAEE).

Le batterie al piombo e l'olio devono essere raccolti e inviati a specifici centri di raccolta dei rifiuti.

Evitare la fuoriuscita di gas refrigeranti nell'ambiente utilizzando recipienti a pressione adatti e strumenti atti al travaso dei fluidi in pressione. Questa operazione deve essere affidata a personale competente in impianti frigoriferi e in conformità alle leggi vigenti del paese di installazione.

12 DURATA

La vita utile di questa unità è di 10 (dieci) anni.

Dopo tale periodo il produttore consiglia di effettuare un controllo totale dell'insieme e soprattutto la verifica d'integrità dei circuiti frigoriferi in pressione, così come richiesto dalle leggi vigenti in alcuni paesi della Comunità Europea.

La presente pubblicazione ha solo finalità di supporto tecnico e non costituisce un impegno vincolante per Daikin Applied Europe S.p.A. Il contenuto è stato scritto da Daikin Applied Europe S.p.A. al meglio delle proprie conoscenze. Nessuna esplicita o implicita garanzia è data per la completezza, precisione, affidabilità del suo contenuto. Tutti i dati e le specifiche in essa riportati possono essere soggetti a modifiche senza preavviso. Fare riferimento ai dati comunicati al momento dell'ordine. Daikin Applied Europe S.p.A. declina espressamente qualsiasi responsabilità per qualsiasi danno diretto o indiretto, nel senso più ampio, derivante da o relativo all'uso e/o all'interpretazione della presente pubblicazione. Tutto il contenuto è protetto dal copyright di Daikin Applied Europe S.p.A.

DAIKIN APPLIED EUROPE S.p.A.

Via Piani di Santa Maria, 72 - 00072 Ariccia (Roma) - Italia Tel: (+39) 06 93 73 11 - Fax: (+39) 06 93 74 014 http://www.daikinapplied.eu